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a b s t r a c t

We investigate the steady-state equations of motion of the generalized Newtonian
fluid in a bounded domain Ω ⊂ RN , when N = 2 or N = 3. Applying the tools of
nonlinear analysis (Smale’s theorem, theory of Fredholm operators, etc.), we show
that if the dynamic stress tensor has the 2-structure then the solution set is finite
and the solutions are C1-functions of the external volume force f for generic f . We
also derive a series of properties of related operators in the case of a more general
p-structure, show that the solution set is compact if p > 3N/(N + 2) and explain
why the same approach as in the case p = 2 cannot be applied if p ̸= 2.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The dynamic stress tensor

We denote by v the velocity of a moving fluid and by Dv the rate of deformation tensor, which coincides
with the symmetric gradient of velocity: Dv := 1

2 [∇v + (∇v)T ]. It is well known that the dynamic stress
tensor S in the so called Stokesian fluid generally depends on the rate of deformation tensor through the
formula

S(Dv) = α I + β Dv + γ (Dv)2, (1.1)

where the coefficients α, β and γ may further depend on the state variables (pressure q, density ρ, temperature
ϑ) and on the principal invariants of tensor D. (See e.g. [1, Sec. 5.21, 5.22].) If the density is constant (which
implies that the fluid is incompressible and the first principal invariant of Dv, i.e. div v, is equal to zero)
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and the fluid is Newtonian (which means that the dependence of S on Dv is linear) then (1.1) reduces to the
form S(Dv) = β Dv, where β still may depend on q and ϑ. Considering particularly β = 2µ, where µ is the
so called dynamic coefficient of viscosity, and substitution of S(Dv) = 2µDv into the momentum balance
equation yields the well known Navier–Stokes equation for incompressible fluid. (See e.g. [2, Sec. 3.3].) In
practice, however, many fluids exhibit nonlinear dependence of tensor S on tensor Dv. In the so called
generalized Newtonian fluids, S is also related to D through the formula S(Dv) = β Dv, but the coefficient
β may depend on |Dv|. (Since |Dv| =

√
−2I2(Dv), where I2(Dv) is the second principal invariant of Dv, β

in fact depends on Dv through the invariant I2(Dv).)
In this paper, we deal with steady flows of incompressible generalized Newtonian fluids. Due to technical

reasons, we write f(|Dv|2) instead of β(|Dv|). Thus, the dynamic stress tensor S depends on the rate of
deformation tensor Dv according to the law

S(Dv) := f
(

|Dv|2
)
Dv. (1.2)

1.2. The boundary-value problem

The steady state equation of balance of momentum has the form

− div S(Dv) + v · ∇v + ∇q = f , (1.3)

and the condition of incompressibility is

div v = 0. (1.4)

Eqs.(1.3) and (1.4) are considered in a bounded Lipschitzian domain Ω ⊂ RN , where N = 2 or N = 3.
The unknowns are v ≡ (v1, v2, v3) (the velocity) and q (the pressure). Function f on the right hand side
of (1.3) represents the external body force. The density is, for simplicity, considered to be equal to 1. The
system (1.3), (1.4) is completed by the homogeneous Dirichlet boundary condition (also called the “no slip
condition”)

v = 0 on ∂Ω . (1.5)

In the rest of the paper, we use the abbreviation “BVP” for “boundary-value problem”. Foundations of the
qualitative theory of the BVP (1.3)–(1.5) and related models were given in the papers [3] (by J. Nečas,
J. Málek and M. Růžička) and [4] (by H. Bellout, F. Bloom and J. Nečas). The existence of a weak solution
to the BVP (1.3)–(1.5) was proved by J. Frehse, J. Málek and M. Steinhauer [5] for general N ≥ 2 under
the condition that tensor S has the so called p-structure, where

2N

N + 2 < p < ∞. (1.6)

(See Section 1.4 for the explanation what the p-structure means.) The proof is based on the method of
Lipschitz truncations. The procedure is also explained in detail in paper [6]. (Here, the author extends the
existential result to the case p = 2N/(N + 2), N ≥ 3.)

1.3. Aims and results of this paper, previous related results

Since steady solutions to the Navier–Stokes equations are generally not unique, it is realistic to expect
(although it has not yet been explicitly shown) that solutions to the BVP (1.3)–(1.5) are also not generally
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