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a b s t r a c t

We consider a coupled system of a linearly elastic body immersed in a flowing fluid
which is modeled by means of the incompressible Navier–Stokes equations with
mixed Dirichlet–Neumann-type boundary conditions. For this system we formulate
an optimal control problem which amounts to a minimization under constraints
of a hydro-elastic pressure at the interface between the two environments. The
corresponding functional lacks convexity and radial unboundedness — a serious
obstacle to the solution of the optimization problem. The approach taken to solve
it is based on transforming the variable domain occupied by the fluid into a fixed
domain corresponding to the undeformed elastic inclusion. This leads to a free
boundary elliptic problem. Mathematical challenge also results from the fact that
the corresponding quasilinear elliptic model is equipped with mixed (Zaremba type)
boundary conditions, which intrinsically lead to compromised regularity of elliptic
solutions. It is shown that under the assumption of small strains, the controlled
structure is wellposed in suitable Sobolev’s spaces and the nonlinear control-to-state
map is well defined and continuous. The obtained wellposedness result provides thus
foundation for proving existence of an optimal control, where the latter is based on
compensated compactness methods. The change in the boundary conditions makes
the analysis different and substantially more challenging — particularly at the
level of wellposedness of both uncontrolled and controlled dynamics. A key to the
existence/uniqueness theory is a suitable localization of the spatial domain and
of the resulting PDE. The geometry of the fluid domain plays a critical role in
the arguments. The analysis of optimal control is nonstandard due to the lack of
convexity and of radial unboundedness of the associated functional cost — main
tools for proving weak lower-semicontinuity of the functional. This difficulty is dealt
with the help of compensated compactness.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models for fluid–structure interactions (FSI) have attracted considerable attention in the
literature. This is due to a broad array of applications ranging from fluid dynamics and aeroelasticity

* Corresponding author.
E-mail address: kszulc@gmail.com (K. Szulc).

https://doi.org/10.1016/j.nonrwa.2018.04.004
1468-1218/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.nonrwa.2018.04.004
http://www.elsevier.com/locate/nonrwa
http://www.elsevier.com/locate/nonrwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nonrwa.2018.04.004&domain=pdf
mailto:kszulc@gmail.com
https://doi.org/10.1016/j.nonrwa.2018.04.004


I. Lasiecka et al. / Nonlinear Analysis: Real World Applications 44 (2018) 54–85 55

Fig. 1. Domain D = Ω1 ∪ Ω2 with its boundary Γin ∪ Γout ∪ Γwall.

to biological, life sciences and medicine. Specific examples are abundant. Problems such as interaction of
gas/fluid flow surrounding the structure (submarine submersed in water, wing of an airplane in a viscous gas),
or fluid inside a structure (body fluids in the cardiovascular systems) are prime examples of applications
modeled by FSI [1–7]. These models involve coupled PDEs consisting of a fluid equation (typically NS
equation) and a structure equation (typically elastic body, plate or shell). The pivotal role in the analysis is
played by the interface between the two media, which by itself is unknown and is determined by deformations
of the structure. Thus, we deal with a “free” boundary problem. External boundary conditions depend on the
type of application under consideration. A mathematical theory of such models is still under development and
its complexity and challenge depend on (i) the type of boundary data prescribed and (ii) the geometry of the
domain. Since the overall mathematical model leads to a quasilinear system, regularity of the corresponding
elliptic solutions plays a dominant role. It is well known that regularity of elliptic solutions with regular
input data can be compromised by two factors: (i) singularity of the domain [8], (ii) mixed type of boundary
conditions referred often to as Zaremba problem [9]. On the other hand, specific applications call for such
domains/scenarios to be considered [10]. While FSI, in both static [11,12] and dynamic [13–17] forms, have
been treated, these works refer to “regular” configurations with respect to the domain and homogeneous
boundary conditions. What distinguishes our work are two facts: (i) that we deal with “corners” and mixed
Dirichlet/Neumann boundary conditions imposed on the same part of the boundary, (ii) that we treat
boundary control problem with Dirichlet non-homogeneous data, with the goal of reducing the aerodynamic
resistance due to build-up of the pressure. The change in the boundary conditions makes the analysis different
and substantially more challenging. In addition, a control problem associated with the FSI is also studied. In
what follows we shall describe the problem studied. The analysis in the stationary case is a first step toward
extending the results to dynamic models where the treatment of both local and global (in time) solutions
has been considered in the case of smooth boundaries and with zero Dirichlet data imposed on the external
boundary of the fluid [15,18,19].

2. Problem formulation

Let D ⊂ Rn, n = 2, 3 be a bounded domain with a piecewise regular boundary ∂D consisting of two
sub-domains Ω1 and Ω2, as shown in Fig. 1(a). The boundary ∂Ω1 of the interior doughnut-like domain
Ω1 is denoted by Γint ∪ Γ1 while the exterior boundary ∂Ω2 is denoted by Γext = Γin ∪ Γout ∪ Γwall. In the
interior subdomain Ω1 we consider the problem of linear elasticity for an elastic body with u denoting the
displacement field. In the exterior subdomain Ω2 we consider a Navier–Stokes problem for the motion of a
fluid with w̃ denoting the velocity field. As will be seen below, the resulting system is quasilinear with a
free boundary. The two goals of the paper are: (a) to provide a wellposedness theory (existence, uniqueness
and continuous dependence on the data) for the corresponding solution, and (b) to establish existence of a
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