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a b s t r a c t

We consider a singular limit problem for the complete compressible Euler system
in the low Mach and strong stratification regime. We identify the limit problem
– the anelastic Euler system – in the case of well prepared initial data. The result
holds in the large class of the dissipative measure-valued solutions of the primitive
system. Applications are discussed to the driven shallow water equations.
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1. Introduction

The following system of equations arises in a number of real world applications, in particular in certain
astrophysical and meteorological models (see e.g. the survey by Klein [1]):

∂tϱ + divx(ϱu) = 0, (1.1)

∂t(ϱu) + divx(ϱu ⊗ u) + 1
ε2 ∇xp(ϱ, ϑ) = 1

ε2 ϱ∇xF, (1.2)

∂t

(
1
2ϱ|u|2 + 1

ε2 ϱe(ϱ, ϑ)
)

+ divx

[(
1
2ϱ|u|2 + 1

ε2 ϱe(ϱ, ϑ)
)

u
]

+ 1
ε2 divx(p(ϱ, ϑ)u) = 1

ε2 ϱ∇xF · u. (1.3)

The equations (1.1), (1.2), and (1.3) represent a mathematical formulation of the conservation of mass,
momentum, and energy, respectively, of a compressible inviscid fluid driven by a potential force ∇xF . Here,
the state of the fluid at a time t and a spatial position x is given by its mass density ϱ = ϱ(t, x), the
macroscopic velocity u = u(t, x) and the (absolute) temperature ϑ = ϑ(t, x). The pressure p = p(ϱ, ϑ) and
the internal energy density e = e(ϱ, ϑ) are given explicitly through an equation of state.
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To close the system we specify the physical domain — an infinite slab, “periodic” in the horizontal
variable:

Ω =
(
[−1, 1]|{−1,1}

)2 × [0, 1],

supplemented with the impermeability condition

u · n|∂Ω = 0, meaning, u3(t, x1, x2, 0) = u3(t, x1, x2, 1) = 0. (1.4)

Later, to extend the range of possible applications of our result, we consider a slightly more general setting,
Ω ⊂ RN , N = 2, 3, – a bounded regular domain – supplemented with the impermeability condition

u · n|∂Ω = 0. (1.5)

Problem (1.2)–(1.4) contains a small positive parameter ε > 0. Our aim is to identify the limit problem
for ε → 0. Rather surprisingly, the limit problem is not unique and depends on the choice of the initial data.
To see this, let us examine the associated static system

∇xp(ϱ, ϑ) = ϱ∇xF. (1.6)

To simplify presentation, we suppose that p satisfies the standard Boyle–Mariotte law,

p(ϱ, ϑ) = ϱϑ,

and that

F (x) = −x3.

Accordingly, the pressure p in (1.6) depends only on the vertical variable x3 and problem (1.6) reduces to

1
ϱ

∂x3(ϱϑ) = −1. (1.7)

1.1. Isothermal limit

Suppose, that ϑ = ϑ > 0 — a positive constant. Then the stationary problem (1.7) can be explicitly
solved,

ϱ = ϱ̃(x3), ϱ̃(x3) = cM exp
(

−x3

ϑ

)
, cM > 0,

where the value of the constant cM is uniquely determined by prescribing the total mass M =
∫
Ω

ϱ̃ dx. The
limit system for the isothermal case has been identified in [2]. It turns out that the limit velocity field U
has only two components,

U(x1, x2, x3) =
[
U1(x1, x2, x3), U2(x1, x2, x3), 0

]
≡ [Uh(x1, x2, x3), 0] ,

where, for any fixed x3, the field Uh(·, x3) satisfies the incompressible Euler system

divhUh = 0, (1.8)

∂tUh + Uh · ∇hUh + ∇hΠ = 0, (1.9)
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