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a b s t r a c t

A theoretical study on the occurrence of internal rogue waves in density stratified
flows is conducted. While internal rogue waves for long wave models have been
studied in the literature, the focus here is on unexpectedly large amplitude
displacements arising from the propagation of slowly varying wave packets. In the
first stage of the analysis we calculate new exact solutions of the linear modal
equations in a finite domain for realistic stratification profiles. These exact solutions
are then used to facilitate the calculations of the second harmonic and the induced
mean motion, leading to a nonlinear Schrödinger equation for the evolution of a
wave packet. The dispersion and nonlinear coefficients then determine the likelihood
for the occurrence of rogue waves. Several cases of buoyancy frequency (N) are
investigated. For N2 profiles of hyperbolic secant form, rogue waves are unlikely
to occur as the dispersion and nonlinear coefficients are of opposite signs. For N2

taking constant values, rogue waves will arise for reasonably small carrier envelope
wavenumbers, in sharp contrast with the situation for a free surface, where the
condition is kh > 1.363 (k = wavenumber of the carrier envelope, h = depth).
Finally, a special N2 profile permits an analytical treatment for a linear shear
current. Unexpectedly large amplitude waves are possible as the dispersion and
nonlinear coefficients can then be of the same sign.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Stratified flows and internal waves occur frequently in the atmosphere and the oceans [1,2]. The
dynamics and properties of such flows play an essential role in processes such as transport, mixing and
the movement of nutrients in the oceans. Studies of small amplitude disturbances in stratified flows will
then enhance the analytical description of the fluid motion, and have developed into a branch of classical
hydrodynamic theory [3]. Concerning the dynamics of the oceans, a commonly used assumption is to employ
the Boussinesq approximation, where the variation in the density is ignored except in the buoyancy term.
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In this approximation the governing equation for small disturbances is defined as an eigenvalue problem for
the phase speed:

(U − c)
(
ϕyy − k2ϕ

)
− Uyyϕ+ N2ϕ

U − c
= 0, (1)

where ϕ, U = U(y), k, c are the modal function of the linearized vertical velocity field, background shear,
wavenumber and wave speed respectively, and y is the vertical coordinate. N is the buoyancy frequency
given by

N2 = −g

ρ

d ρ

dy
(g is gravity), (2)

where ρ is the mean density profile in the undisturbed state. Extensive studies have been performed on this
classical equation, ranging from special exact solutions [4] to stability considerations [5].

For the special case where a background shear flow is absent (U(y) = 0), this eigenvalue problem becomes
the modal equation

ϕyy +
[
N2

c2 − k2
]
ϕ = 0, (3)

which, together with the boundary conditions, defines an eigenvalue problem for the speed c with a given
input wavenumber k. For stable stratification, there is no instability in the absence of a current. In developing
the theory for the propagation of waves with a modal function given by Eq. (3), it is necessary to determine
the dispersion relation ω = ω(k) where ω is the wave frequency, the group velocity

cg = ∂ω/∂k,

and frequently cgk = ∂2ω/∂k2 as well. For this purpose, it is useful if explicit solutions of Eq. (3) can be found.
One objective of this work is to establish exact solutions for this reduced form of the eigenvalue problem
Eq. (3), in particular for a special class of density profiles, namely, the buoyancy frequency being the square
of the hyperbolic secant with respect to the vertical coordinate. The underlying methodology is to note a
connection with the nonlinear Schrödinger equation (NLSE) from the theory of solitons. Special solutions
from the NLSE theory are then employed in solving the eigenvalue problem Eq. (3). While knowledge from
classical linear differential equations, e.g. Pöschl–Teller and reflectionless potentials [6], hypergeometric and
Legendre functions, could be invoked for this ‘sech square’ profile, utilizing coupled Schrödinger models can
generate eventually solutions for more complicated, and even asymmetric, density profiles.

To describe waves with larger amplitude, a Hamiltonian formulation or higher order perturbation scheme
will be necessary. A Hamiltonian approach of a two-layer fluid with nonzero mean flow can demonstrate the
properties of wave–current interactions vividly [7]. Investigations of higher order series expansion, e.g. the
Witting series and the Karabut system, can also be utilized to elucidate solitary waves for fluids of a finite
depth [8]. Indeed ingenious mathematical methodologies have been applied to reveal intriguing nonlinear
dynamics of these hydrodynamic systems, e.g. an implicit function approach is employed for the propagation
of capillary–gravity waves in a spherical coordinate system [9].

Similar to the case of surface waves, the propagation of weakly nonlinear internal wave trains in a
continuously stratified fluid is described by the NLSE [10]. Among various solutions of the NLSE which
are physically relevant to water waves, the Peregrine breather (PB) solution [11] has attracted substantial
attention recently due to its application to model rogue waves in the ocean [12]. The localized nature of
the PB in both space and time resembles the character of a rogue wave as an entity which ‘appears from
nowhere and disappears without a trace’. Remarkably, PB and its higher order variations are realizable in
water wave tanks [13,14]. In the context of surface waves, PB exists only in the focusing or deep water regime,
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