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a b s t r a c t

In the present article, a bimolecular chemical reaction–diffusion model with
autocatalysis and saturation law is considered. The local asymptotic stability and
instability of the unique feasible equilibrium of the local system, and the existence
of Hopf bifurcation of the local system at this unique equilibrium are analyzed in
detail. In the stability domain of the equilibrium of the local system, the effect
of the spatial diffusion including the variation of the size of the space domain
and the diffusion coefficient on the stability is studied and Turing instability is
demonstrated. In the instability domain of the local system, time-periodic patterns
of the original reaction–diffusion system bifurcating from the constant positive
steady state are found according to the Hopf bifurcation theorem for reaction–
diffusion dynamical systems with homogeneous Neumann boundary conditions by
considering various different bifurcation parameters. Finally, to verify the obtained
theoretical prediction, some numerical simulations are also included.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the bimolecular chemical reaction processes should be described by the reaction–
diffusion system with autocatalysis and saturation law. Consider the reaction process given by (see [1–5])

A
m1−−→ Z,

Y + Z
m2−−→ 2Y, (autocatalysis)

Y
S(m3,m4)−−−−−−→ P, (saturation law)

(1.1)

where A, Y, Z and P are the chemical reactants and products; m1, m2, m3 and m4 represent the reaction
rates and the function S(m3, m4) accounts for the saturation laws often used like the Langmuri–Hinshelwood
law in heterogeneous catalysis and adsorption, the Michaelis–Menten law in enzyme-controlled processes and
the Holling law in ecology.
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Assume that, in the reaction process (1.1), the in-and-out-flow of A and P is open, all the reaction steps
are irreversible and the concentrations of A and P are independent of time and spatial variables, that is, they
are kept uniform throughout the reaction. As well, assume that the saturation law in the reaction process
(1.1) follows the one of Michaelis–Menten types and there is no flux across the boundary of the reactor. If
we consider only the isothermal processes but not consider the convective phenomenon, then the reaction
process (1.1) can be described by the following reaction–diffusion model with autocatalysis and saturation
law in the form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂T
= D1∆U + m2UV − m3U

1 + m4U
, X ∈ Ω , T > 0,

∂V

∂T
= D2∆V + m1A0 − m2UV, X ∈ Ω , T > 0,

∂U

∂ν
= ∂V

∂ν
= 0, X ∈ ∂Ω , t > 0,

U(X, 0) = U0(X) ≥ 0, V (X, 0) = V0(X) ≥ 0, X ∈ Ω̄ ,

(1.2)

where ∆ is the Laplace operator and the bounded domain Ω in Rn(n ≥ 1) with a smooth boundary ∂Ω

denotes the reactor; ν is the outer unit normal vector on ∂Ω and the homogeneous Neumann boundary
condition is imposed because there is no flux across the boundary ∂Ω ; A0, U and V represent respectively
the concentrations of reactants A, Y, Z; the positive constants D1 and D2 stand for the diffusion coefficients
of reactants Y and Z, respectively; m1, m2, m3 > 0 are the reaction rates and m4 > 0 accounts for the
strength of the saturation law.

Let t = m3T , x =
√

m3
D1

X and introduce the new variables u(x, t) and v(x, t) by

u(x, t) = m2

m3
U(X, T ) = m2

m3
U

(√
D1

m3
x,

t

m3

)
,

v(x, t) = m3

m1A0
V (X, T ) = m3

m1A0
V

(√
D1

m3
x,

t

m3

)
.

Then the system (1.2) is reduced to the following one⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= ∆u + auv − u

1 + mu
, x ∈ Ω , t > 0,

∂v

∂t
= σ∆v + 1 − uv, x ∈ Ω , t > 0,

∂u

∂ν
= ∂v

∂ν
= 0, X ∈ ∂Ω , t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω̄ ,

(1.3)

where the scaled spatial domain is still denoted by Ω and

a = m1m2A0

m2
3

, m = m3m4

m2
and σ = D2

D1
.

System (1.3) has been investigated extensively by many researchers and some interesting results also have
been obtained, see [3–5]. For instance, Peng, Shi and Wang [4] considered the existence and non-existence of
non-constant steady-state solutions of (1.3) when the diffusion rate σ is large or small by using the degree
theory. In [3], Yi et al. studied the spatiotemporal patterns of (1.3) with σ = 1 and the spatial domain Ω taken
as the one-dimensional interval (0, ℓπ) with ℓ > 0. Lately, Peng and Yi in [5] improved the result of steady
state bifurcation obtained in [3] and investigated further the effect of various parameters on spatiotemporal
patterns. As one of the mechanisms of pattern formation, the spatially nonhomogeneous steady states



Download English Version:

https://daneshyari.com/en/article/7221996

Download Persian Version:

https://daneshyari.com/article/7221996

Daneshyari.com

https://daneshyari.com/en/article/7221996
https://daneshyari.com/article/7221996
https://daneshyari.com

