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a b s t r a c t

We consider an abstract nonlinear second order evolution equation, inspired by
some models for damped oscillations of a beam subject to external loads or magnetic
fields, and shaken by a transversal force. When there is no external force, the system
has three stationary positions, two stable and one unstable, and all solutions are
asymptotic for t large to one of these stationary solutions.

We show that this pattern extends to the case where the external force is bounded
and small enough, in the sense that solutions can exhibit only three different
asymptotic behaviors.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Let H be a real Hilbert space, in which |x| denotes the norm of an element x ∈ H, and ⟨x, y⟩ denotes the
scalar product of two elements x and y. Let A be a self-adjoint positive operator on H with dense domain
D(A).

We consider some evolution problems of the following form

u′′ + δu′ + k1A
2u− k2Au+ k3|A1/2u|

2
Au = f(t), (1.1)

where δ, k1, k2, k3 are positive constants, and f : [0,+∞) → H is a given forcing term, with initial data

u(0) = u0, u′(0) = u1.

A concrete example of an equation that fits in this abstract framework is the partial differential equation

utt + δut + k1uxxxx + k2uxx − k3

(∫ 1

0
u2

x dx

)
uxx = f(t, x) (1.2)

* Corresponding author.
E-mail addresses: marina.ghisi@unipi.it (M. Ghisi), massimo.gobbino@unipi.it (M. Gobbino), haraux@ann.jussieu.fr (A.

Haraux).

https://doi.org/10.1016/j.nonrwa.2018.02.007
1468-1218/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.nonrwa.2018.02.007
http://www.elsevier.com/locate/nonrwa
http://www.elsevier.com/locate/nonrwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nonrwa.2018.02.007&domain=pdf
mailto:marina.ghisi@unipi.it
mailto:massimo.gobbino@unipi.it
mailto:haraux@ann.jussieu.fr
https://doi.org/10.1016/j.nonrwa.2018.02.007


168 M. Ghisi et al. / Nonlinear Analysis: Real World Applications 43 (2018) 167–191

in the strip (t, x) ∈ [0,+∞) × [0, 1], with boundary conditions

u(t, x) = uxx(t, x) = 0 ∀(t, x) ∈ [0,+∞) × {0, 1}. (1.3)

Physical models and experiments. Eq. (1.2) appears in [1] as a model for the motion of a beam which is
buckled by an external load k2, and shaken by a transverse displacement f(t) (depending only on time, in
that model). Eq. (1.2) becomes a special case of (1.1) if we choose H := L2((0, 1)) and Au = −uxx with
homogeneous Dirichlet boundary conditions. The “hinged ends” boundary conditions (1.3) are essential here.

A different physical model leading to equations of the form (1.2), although with different boundary
conditions, is the so called magneto-elastic cantilever beam described in Figure 1 of [2]. Due to the different
boundary conditions, this equation does not reduce to (1.1) but it is reasonable to expect a similar global
behavior of solutions. The physical apparatus consists in a beam which is clamped vertically at the upper
end, and suspended at the other end between two magnets secured to a base. The whole system is shaken
by an external force transversal to the beam.

Both systems exhibit a somewhat complex behavior. To begin with, let us consider the case without
external force. When k2 is small enough, the trivial solution u(t) ≡ 0 is stable. This regime corresponds to a
small external load in the first model, and to a large distance from the magnets in the case of the magneto-
elastic beam. When k2 increases, the trivial solution becomes unstable, and two nontrivial equilibrium states
appear. In this new regime, the effect of an external force seems to depend deeply on the size of the force
itself. If the force is small enough, experiments reveal that solutions remain close to the equilibrium states
of the unforced system. On the contrary, when the external force is large enough, trajectories seem to show
a chaotic behavior. Describing and modeling this chaotic behavior was actually the main goal of [2,1].

Simple modes and Duffing’s equation. Up to changing the unknown and the operator according to the rules

u(t)⇝ αu(βt), A⇝ γA

for suitable values of α, β, γ, we can assume that three of the four constants in (1.1) are equal to 1. We end
up, naming for simplicity the new unknown by u as well, with the equation

u′′ + u′ +A2u− λAu+ |A1/2u|
2
Au = f(t) (1.4)

with the initial conditions renamed accordingly

u(0) = u0, u′(0) = u1. (1.5)

Just to fix ideas, we can also assume, as in the concrete example (1.2), that H admits an orthonormal basis
{en} made by eigenvectors of A, corresponding to an increasing sequence λ1 < λ2 < · · · of positive eigen-
values. If we restrict Eq. (1.4) to the kth eigenspace, we obtain an ordinary differential equation of the form

u′′
k + u′

k + λk(λk − λ)uk + λ2
ku

3
k = fk(t). (1.6)

Of course (1.4) is not equivalent to the system made by (1.6) as k varies, because of the coupling due
to the nonlinear term. Nevertheless, in the special case where both initial data and the external force are
multiples of a given eigenvector ek, Eq. (1.4) reduces exactly to (1.6).

Eq. (1.6) is known in the mathematical literature as Duffing’s equation. When there is no external force,
namely fk(t) ≡ 0, it is well-known that the behavior of solutions depend on the sign of the coefficient of uk,
or equivalently of λk − λ.

• When λ < λk, we are in the so-called hardening regime, in which the trivial solution uk(t) ≡ 0 is the
unique stationary solution, and it is asymptotically stable (actually all solutions tend to 0 exponentially
fast as t → +∞).



Download English Version:

https://daneshyari.com/en/article/7222005

Download Persian Version:

https://daneshyari.com/article/7222005

Daneshyari.com

https://daneshyari.com/en/article/7222005
https://daneshyari.com/article/7222005
https://daneshyari.com

