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a b s t r a c t

We investigate the fast relaxation of internal energy in nonequilibrium gas models
derived from the kinetic theory of gases. We establish uniform a priori estimates
and existence theorems for symmetric hyperbolic–parabolic systems of partial
differential equations with small second order terms and stiff sources. We prove
local in time error estimates between the out of equilibrium solution and the
one-temperature equilibrium fluid solution for well prepared data and justify the
apparition of volume viscosity terms.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The kinetic theory of polyatomic gases shows that the volume viscosity coefficient is related to the time
required for the internal and translational temperatures to come to equilibrium [1–7]. We establish in this
paper local in time error estimates between the solution of an out of equilibrium two-temperature model
and the solution of a one-temperature equilibrium model – including volume viscosity terms – when the
relaxation time goes to zero.

The system of partial differential equations modeling fluids out of thermodynamic equilibrium as derived
from the kinetic theory of gases is first summarized [5,6]. This system and its symmetrizability properties
have been investigated in our previous work [8]. The symmetrizing normal variable w of the out of equilibrium
model is taken in the form

w =
(
ρ, v, 1

Ttr
− 1
Tin

,− 1
T

)t

, (1.1)

where ρ denotes the gas density, v the fluid velocity, Ttr the translational temperature, Tin the internal
temperature, and T the local equilibrium temperature. The resulting system of partial differential equations
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is in the general form

A0(w)∂tw +
∑
i∈D

Ai(w)∂iw − ϵd
∑

i,j∈D
∂i

(
Bij(w)∂jw

)
+ 1
ϵ

L(w)w = ϵdb(w, ∂xwii), (1.2)

where ∂t denotes the time derivative operator, ∂i the space derivative operator in the ith direction,
D = {1, . . . , d} the spatial directions, d the space dimension, ϵ, ϵd ∈ (0, 1] two positive parameters and
w = (wi,wii)t is decomposed into its hyperbolic components wi and parabolic components wii. The matrix A0
is symmetric positive definite and bloc-diagonal, Ai are symmetric, Bt

ij = Bji, Bij have nonzero components
only into the right lower Bii,ii

ij blocs, Bii,ii =
∑

i,j∈DBii,ii
ij (w)ξiξj is positive definite for ξ ∈ Σd−1, L is

positive semi-definite with a fixed nullspace E , and b(w, ∂xwii) is quadratic in the gradients. Denoting by
π the orthogonal projector onto E⊥, the normal variable w is such that we have the commutation relation
πA0 = A0π. The source term is also naturally in quasilinear form as is typical in a relaxation framework and
often encountered in mathematical physics [9]. The small parameter ϵ is associated with energy relaxation
and the small parameter ϵd with second order dissipative terms.

We establish uniform a priori estimates for linearized symmetric hyperbolic–parabolic systems with small
dissipation and stiff sources obtained from the nonlinear equations (1.2). Symmetrized forms are important
for analyzing hyperbolic as well as hyperbolic–parabolic systems of partial differential equations modeling
fluids [10–41]. A priori estimates are obtained uniformly with respect to the parameters ϵd ∈ (0, 1] and
ϵ ∈ (0, 1]. The differences with the estimates established by Kawashima [14] are the inclusion of extra terms
associated with the fast variables πw/ϵ and πw/

√
ϵ as well as the coupling with the estimates for time

derivatives. Denoting by w⋆ a constant equilibrium state and τ̄ a positive time, we estimate w − w⋆ in the
space C0(

[0, τ̄ ], H l
)

as well as ∂tw and πw/ϵ in L2(
(0, τ̄), H l−1)

for l ≥ [d/2]+2 where H l = H l(Rd) denotes
the usual Sobolev space when the initial solution is close to the equilibrium manifold. A priori estimates
require the commutation between the mass matrix and the orthogonal projector onto the fast manifold
πA0 = A0π. These estimates lead to local existence theorems for well prepared initial conditions on a time
interval independent of both parameters ϵd ∈ (0, 1] and ϵ ∈ (0, 1]. Key points for local existence are notably to
take into account stiff sources in the linearized equations in order to build approximated solutions, the new
estimates for time derivatives, and the convergence rate of successive approximations that may depends on ϵ.
Stronger estimates for ∂tw in C0(

[0, τ̄ ], H l−2)
as well as for π∂tw/ϵ in L2(

(0, τ̄), H l−3)
with l ≥ [d/2]+4 are

also established when the initial time derivative is close to the equilibrium manifold. These theorems yield
the first existence results for the out of equilibrium two-temperature model derived in [5] and symmetrized
in [8]. On the other hand, the situation of ill prepared initial data lay beyond the scope of this work and we
refer the reader to [42]. In the same vein, only local existence results are investigated and we refer to [43]
for global existence results.

We finally investigate the singular limit ϵ, ϵd → 0 in the system modeling fluids out of thermodynamic
equilibrium. Various relaxation models have also been investigated in the literature in different physical and
mathematical contexts [17,19,24,44,31,45,46,35,47,39,41]. In order to investigate the asymptotic behavior
of solutions as ϵ, ϵd → 0 we combine a priori estimates out of thermodynamic equilibrium with stability
results associated with the equilibrium limit model. The fast variable notably corresponds to the rescaled
temperature difference with (Ttr − Tin)/ϵ = −TtrTinπw/ϵ and we use that perturbed hyperbolic–parabolic
systems with small second order terms and perturbing right hand sides admit local solutions that depend
continuously on perturbations. Denoting by we = (ρe, ve,−1/Te)t the solution of the equilibrium one-
temperature model including the volume viscosity terms and by φw = (ρ, v,−1/T )t the projection on
the slow manifold of the normal variable w out of equilibrium, we establish that φw − we = O

(
ϵ(ϵ + ϵd)

)
.

This justifies the addition of the volume viscosity term −κe (∇ · ve)I in the viscous tensor Πe at equilibrium

Πe = −κe (∇ · ve)I − ηe
(
∇ve + (∇ve)t − 2

3(∇ · ve)I
)
,
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