The Cauchy problem for quadratic and cubic Ostrovsky equation with negative dispersion

JunFang Wang ${ }^{\text {a }}$, Wei Yan ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Lanzhou University, LanZhou Gansu 730000, PR China
${ }^{\text {b }}$ College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, PR China

A R T I C L E I N F O

Article history:
Received 22 August 2017
Accepted 2 March 2018

Keywords:

Quadratic and cubic Ostrovsky
equation with negative dispersion
Cauchy problem
Strichartz estimates

A B S T R A C T

In this paper, we consider the Cauchy problem for the quadratic and cubic Ostrovsky equation with negative dispersion

$$
\partial_{x}\left(u_{t}-\beta \partial_{x}^{3} u+\frac{1}{k} \partial_{x}\left(u^{k}\right)\right)-\gamma u=0, \beta<0, \gamma>0,(k=2,3) .
$$

Firstly, by using the Strichartz estimates instead of the Cauchy-Schwarz inequalities, we give an alternative proof of Lemma 1.2 of Isaza and Mejía (2006). Secondly, by using the Strichartz estimates instead of the Cauchy-Schwarz inequalities, we give an alternative proof of Lemma 1.3 of Isaza and Mejía (2007). Thirdly, we prove that the Cauchy problem for the cubic Ostrovsky equation is locally well-posed in $H^{s}(\mathbf{R})$ with $s \geq \frac{1}{4}$. Finally, we prove that the Cauchy problem for the cubic Ostrovsky equation is not well-posed in $H^{s}(\mathbf{R})$ with $s<\frac{1}{4}$.
© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the Cauchy problem for quadratic and cubic Ostrovsky equation with negative dispersion

$$
\begin{align*}
& \partial_{x}\left(u_{t}-\beta \partial_{x}^{3} u+\frac{1}{k} \partial_{x}\left(u^{k}\right)\right)-\gamma u=0, \gamma>0, \beta<0, k=2,3 \tag{1.1}\\
& u(x, 0)=u_{0}(x) \tag{1.2}
\end{align*}
$$

Here $u(x, t)$ represents the free surface of the liquid and the parameter $\gamma>0$ measures the effect of rotation. (1.1) describes the propagation of internal waves of even modes in the ocean, for instance, see the works of Galkin and Stepanyants [1], Leonov [2], and Shrira [3,4] and Ostrovskii [5]. The parameter β determines the

[^0]type of dispersion, more precisely, $\beta<0$ (negative dispersion) for surface and internal waves in the ocean or surface waves in a shallow channel with an uneven bottom and $\beta>0$ (positive dispersion) for capillary waves on the surface of liquid or for oblique magneto-acoustic waves in plasma [1,6-8].

Now we give a brief review about the quadratic Ostrovsky equation. Some authors have investigated the stability of the solitary waves or soliton solutions to (1.1), for instance, see [9-15]. Varlamov and Liu [16] studied the solitary waves and fundamental solution for Ostrovsky equation. Many people have studied the Cauchy problem for (1.1), for instance, see [10,12,14,17-31]. Isaza and Mejía [22] and Tsugawa [32] showed that the Cauchy problem for (1.1) is locally well-posed in $H^{s}(\mathbf{R})$ with $s>-\frac{3}{4}$. Isaza and Mejía [24] proved that the Cauchy problem for (1.1) is not quantitatively well-posed in $H^{s}(\mathbf{R})$ with $s<-\frac{3}{4}$. Coclite and Ruvo [33,34] have proved that as the diffusion parameter tends to zero, the solutions to (1.1) with $k=2$ converge to discontinuous weak solutions of the Ostrovsky-Hunter equation and the asymptotic behavior as γ tends to zero. Recently, by using the modified Besov spaces, Li et al. [35] proved that the Cauchy problem for (1.1) with $k=2$ is locally well-posed in $H^{-\frac{3}{4}}(\mathbf{R})$. Very recently, by paying more attention to the structure of (1.1) with $k=2$, Yan et al. [36] established the local well-posedness of the Ostrovsky equation in $H^{-\frac{3}{4}}(\mathbf{R})$ with positive dispersion.

Levandosky and Liu [9] investigated the stability of solitary waves of the generalized Ostrovsky equation

$$
\begin{equation*}
\left[u_{t}-\beta u_{x x x}+(f(u))_{x}\right]_{x}=\gamma u, x \in \mathbf{R}, \tag{1.3}
\end{equation*}
$$

where f is a C^{2} function which is homogeneous of degree $p \geq 2$ in the sense that it satisfies $s f^{\prime}(s)=f(s)$. Levandosky [15] investigated the stability of ground state solitary waves of (1.3) with homogeneous nonlinearities of the form $f(u)=c_{1}|u|^{p}+c_{2}|u|^{p-1} u, c_{1}, c_{2} \in \mathbf{R}$.

Motivated by [37-40], firstly, by using the $X_{s, b}$ spaces defined in page 5 and the Strichartz estimates instead of the Cauchy-Schwarz inequalities, we give an alternative proof of Lemma 1.2 of [22]. Secondly, by using the $X_{s, b}$ spaces defined in page 5 and the Strichartz estimates instead of the Cauchy-Schwarz inequalities, we give an alternative proof of Lemma 1.3 of [23]. Thirdly, by using the $X_{s, b}$ spaces defined in page 5 and the Strichartz estimates, we prove that (1.1) with $k=3$ is locally well-posed in $H^{s}(\mathbf{R})$ with $s \geq \frac{1}{4}$; finally, we prove that the problem (1.1) with $k=3$ is not well-posed in $H^{s}(\mathbf{R})$ with $s<\frac{1}{4}$.

If u is the solution to (1.1), then $v(x, t)=\beta^{-1} u\left(x, \beta^{-1} t\right)$ is the solution $v_{t}-v_{x x x}+\frac{1}{2} \partial_{x}\left(v^{2}\right)-\beta^{-1} \gamma \partial_{x}^{-1} v=0$. If u is the solution to (1.1), then $v(x, t)=\beta^{-\frac{1}{2}} u\left(x, \beta^{-1} t\right)$ is the solution $v_{t}-v_{x x x}+\frac{1}{3} \partial_{x}\left(v^{3}\right)-\beta^{-1} \gamma \partial_{x}^{-1} v=0$. Hence without loss of generality, we can always assume that $\gamma=-\beta=1$ in this paper.

We introduce some notations before giving the main result. Throughout this paper, we assume that C is a positive constant which may vary from line to line and $0<\epsilon<10^{-4}$. $a \sim b$ means that $|b| \leq|a| \leq 4|b|$. $a \gg b$ means that $|a|>4|b| \cdot \psi(t)$ is a smooth function supported in $[0,2]$ and equals 1 in $[0,1]$. We assume that $\mathscr{F} u$ is the Fourier transformation of u with respect to both space and time variables and $\mathscr{F}^{-1} u$ is the inverse transformation of u with respect to both space and time variables, while $\mathscr{F}_{x} u$ denotes the Fourier transformation of u with respect to the space variable and $\mathscr{F}_{x}^{-1} u$ denotes the inverse transformation of u with respect to the space variable. Let

$$
\begin{aligned}
& \langle\cdot\rangle=1+|\cdot|, \phi(\xi)=\xi^{3}-\frac{1}{\xi}, \phi_{j}(\xi)=\xi_{j}^{3}-\frac{1}{\xi_{j}}, \\
& \sigma=\tau-\phi(\xi), \sigma_{j}=\tau_{j}-\phi\left(\xi_{j}\right)(j=1,2) .
\end{aligned}
$$

Space $X_{s, b}$ is defined by

$$
X_{s, b}=\left\{u \in \mathscr{S}^{\prime}\left(\mathbf{R}^{2}\right):\|u\|_{X_{s, b}}=\left\|\langle\xi\rangle^{s}\langle\sigma\rangle^{b} \mathscr{F} u(\xi, \tau)\right\|_{L_{\tau \xi}^{2}\left(\mathbf{R}^{2}\right)}<\infty\right\} .
$$

https://daneshyari.com/en/article/7222019

Download Persian Version:

https://daneshyari.com/article/7222019

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: wangjunfang0309@126.com (J. Wang), yanwei19821115@sina.cn (W. Yan).

