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a b s t r a c t

We study a free boundary problem modeling solid tumor growth. The simplified
model contains a parameter λ. Different from previous works on bifurcation analysis,
a new ingredient of the present paper is that the influence of the extracellular matrix
(ECM) and matrix degrading enzymes (MDE) interactions is included in the model.
We first show that for each λ > 0, there exists a unique radially symmetric stationary
solution with radius r = RS . Then we prove that there exist a positive integer n∗

and a sequence of λn (n > n∗) for which branches of symmetry-breaking stationary
solutions bifurcate from the radially symmetric one. In particular, we discover that
these λn are larger than those λ̃n previously known when the effects of ECM and
MDE are not considered in the model.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The focus of this paper is the bifurcation analysis of a free boundary model describing solid tumor growth
with microenvironment interactions. Let Ω(t) in R3 denote the tumor region at time t, Γ (t) the boundary
of Ω(t), and n the unit outer normal vector to Γ (t). We next give a brief description of the model.

Assuming that the density ν of the cells depends on the concentration σ of nutrients (e.g., oxygen and
glucose) and that this dependence is linear, so we identify ν with σ in this paper. Following [1], we consider
that the concentration σ of nutrients satisfies the reaction diffusion equation

σt =
diffusion  

∇ · (Dσ∇σ) +
transfer  

λB(σB − σ) −
decay  

λσ
decayσ in Ω(t), (1.1)

with the boundary condition

σ = σ∞ on Γ (t). (1.2)
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Here, Dσ is the nutrient diffusion coefficient, σB is the concentration of nutrient in the blood, λB is the
blood-tissue transfer rate of nutrient, λσ

decay is the rate of consumption of nutrient by the tumor cells, and
σ∞ is the external nutrient concentration. For simplicity, the vasculature is assumed to be uniform, and the
nutrient is also uniform outside of the tumor.

During vascular tumor growth, the viable tumor cells and endothelial cells release matrix degrading
enzymes (MDE) to degrade the extracellular matrix (ECM). Denote by E the ECM density and by M the
level of MDE. M satisfies the reaction diffusion equation [2]

∂M

∂t
=

diffusion  
∇ · (DM ∇M) +

production  
λM

prod1(1 − MM−1
0 ) −

decay  
λM

decayM in Ω(t),

or [3]

∂M

∂t
=

diffusion  
∇ · (DM ∇M) +

production  
λM

prod2σ −

decay  
λM

decayM in Ω(t),

where DM is the MDE diffusion coefficient, M0 is the maximum sustainable density for MDE, λM
decay is

a decay constant, λM
prod1

and λM
prod2

represent the rates of production due to tumor cells and nutrient,
respectively. In order to cover both cases, we assume that M satisfies

∂M

∂t
=

diffusion  
∇ · (DM ∇M) +

production  
λM

prod1(1 − MM−1
0 ) + λM

prod2σ −

decay  
λM

decayM in Ω(t), (1.3)

with the boundary condition

∂M

∂n = 0 on Γ (t). (1.4)

Since ECM does not diffuse, its model equation does not contain any diffusion term. According to [4],
the ECM density E(x, t) satisfies

dE

dt
= −

degradation  
λE

degrME +

proliferation  
λE

prodE(1 − EE−1
0 ) in Ω(t), (1.5)

where λE
degr is the degradation rate, λE

prod the proliferation rate, and E0 the maximum sustainable density
for ECM. Note that it is assumed that MDE used up in the interaction with the ECM with the rate λE

degr

are negligible with the MDE production, so the term −λE
degrME does not appear in the dynamics (1.3) of

MDE [4].
The pressure p within the tumor stems from the proliferation of the tumor cells and is related to the

velocity V⃗ of the concentration σ. Assuming Darcy’s law in the tissue, the velocity satisfies V⃗ = −µ∇p. It is
known [1] that the ECM distribution can affect the development of tumor morphologies and vascular tumor
growth. In [5], Macklin et al. established a model to characterize heterogeneous response to gradients of
pressure and ECM adhesion via nonconstant cell mobility dependent of E and by introducing a haptotaxis
velocity proportional to ∇E. That is, the velocity satisfies

V⃗ = −
pressure gradient by mitosis

µ∇p +
haptotaxis  
χE∇E .

Also see [1,6,7]. For simplicity, we here assume that µ and χE are constants.
Representing by λp the cell-proliferation rate, λA the rate of apoptosis, and λσ

prod a measure of mitosis,
by conservation of mass, we have

∇ · V⃗ = λp = λσ
prodσ − λA.
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