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a b s t r a c t

The current paper is devoted to the study of traveling wave solutions of the following
parabolic–parabolic chemotaxis system,{

ut = ∆u − χ∇ · (u∇v) + u(a − bu), x ∈ RN

τvt = ∆v − v + u, x ∈ RN ,

where u(x, t) represents the population density of a mobile species and v(x, t)
represents the population density of a chemoattractant, and χ represents the
chemotaxis sensitivity.

In an earlier work (Rachidi et al., 2017) by the authors of the current paper,
traveling wave solutions of the above chemotaxis system with τ = 0 are studied.
It is shown in Rachidi et al. (2017) that for every 0 < χ < b

2 , there is c∗(χ) such
that for every c > c∗(χ) and ξ ∈ SN−1, the system has a traveling wave solution
(u(x, t), v(x, t)) = (U(x · ξ − ct; τ), V (x · ξ − ct; τ)) with speed c connecting the
constant solutions ( a

b
, a

b
) and (0, 0). Moreover,

lim
χ→0+

c∗(χ) =
{

2
√

a if 0 < a ≤ 1
1 + a if a > 1.

We prove in the current paper that for every τ > 0, there is0 < χ∗
τ < b

2 such that
for every 0 < χ < χ∗

τ , there exist two positive numbers c∗∗(χ, τ) > c∗(χ, τ) ≥ 2
√

a
satisfying that for every c ∈ (c∗(χ, τ) , c∗∗(χ, τ)) and ξ ∈ SN−1, the system has
a traveling wave solution (u(x, t), v(x, t)) = (U(x · ξ − ct; τ), V (x · ξ − ct; τ)) with
speed c connecting the constant solutions ( a

b
, a

b
) and (0, 0), and it does not have

such traveling wave solutions of speed less than 2
√

a. Moreover,

lim
χ→0+

c∗∗(χ, τ) = ∞,

lim
χ→0+

c∗(χ, τ) =

⎧⎨⎩2
√

a if 0 < a ≤
1 + τa

(1 − τ)+
1 + τa

(1 − τ)+
+

a(1 − τ)+

1 + τa
if a ≥

1 + τa

(1 − τ)+
,
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and

lim
x→∞

U(x; τ)
e−µx

= 1,

where µ is the only solution of the equation µ + a
µ

= c in the interval

(0 , min{
√

a,

√
1+τa

(1−τ)+
}). Furthermore,

lim
τ→0+

χ∗
τ =

b

2
, lim

τ→0+
c∗(χ; τ) = c∗(χ), lim

τ→0+
c∗∗(χ; τ) = ∞.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

At the beginning of 1970s, Keller and Segel (see [1,2]) introduced systems of partial differential equations
of the following form to model the time evolution of the density u(x, t) of a mobile species and the density
v(x, t) of a chemoattractant,{

ut = ∇ · (D(u)∇u − χ(u, v)∇v) + f(u, v), x ∈ Ω
τvt = ∆v + g(u, v), x ∈ Ω

(1.1)

complemented with certain boundary condition on ∂Ω if Ω is bounded, where Ω ⊂ RN is an open domain;
τ ≥ 0 is a non-negative constant linked to the speed of diffusion of the chemical; the function χ(u, v)
represents the sensitivity with respect to chemotaxis; and the functions f and g model the growth of the
mobile species and the chemoattractant, respectively. In literature, (1.1) is called the Keller–Segel model or
a chemotaxis model.

Since the works by Keller and Segel, a large amount of research has been carried out toward various
dynamical aspects of (1.1) on bounded domain, including global existence and finite time blow up of classical
solutions, large time behavior of bounded global solutions, pattern formation, etc. It is seen that chemotactic
cross-diffusion may induce rich dynamics in (1.1). For example, in (1.1) with D(u) ≡ 1, χ(u, v) = u,
f(u, v) = 0, and g(u, v) = −v + u, finite time blow-up might occur (see [3–5] for τ = 0 and [6] for
τ = 1). When D(u) ≡ 1, χ(u, v) = u, g(u, v) = −v + u, and f(u, v) is a logistic source function, that
is, f(u, v) = u(a − bu) with a > 0 and b > 0, the blow-up phenomena may be suppressed to some extend
(see [7] for τ = 0 and [8] for τ = 1).

Consider (1.1) on the unbounded domain Ω = RN . In addition to those important dynamical issues
for chemotaxis models on bounded domains, traveling wave solutions are also among important solutions of
chemotaxis models on RN . Several researchers have studied these solutions for the choice of D(u) ≡ 1, τ = 1,
χ(u, v) = χ log(v), and g(u, v) = −uvm(0 ≤ m ≤ 1) and f being of different types. For these choices of D(u),
χ(u, v), and g(u, v) with f(u) ≡ 0 and 0 < m < 1, Keller and Segel [9], showed that (1.1) can reproduce
the traveling bands whose speeds were in satisfactory agreement with experimental observations. While for
m = 1 and f(u) = κu(1 − u), [10] proved the existence of traveling wave solutions of (1.1). There are many
studies on traveling wave solutions of several other types of chemotaxis models, see, for example, [10–16],
etc. In particular, the reader is referred to the review paper [16]. It should be pointed out that no much is
yet known about the stability of these traveling wave solutions. None of the above mentioned works consider
(1.1) on RN with D(u) ≡ 1, χ(u, v) = u, g(u, v) = −v + u, and f(u, v) = u(a − bu), that is,{

ut = ∆u − χ∇(u∇v) + u(a − bu), x ∈ RN

τvt = ∆v − v + u, x ∈ RN .
(1.2)
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