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a b s t r a c t

We consider nonlinear Dirichlet and Neumann problems driven by a nonlinear
nonhomogeneous differential operator and with a (p − 1)-superlinear Carathéodory
reaction which does not satisfy the Ambrosetti–Rabinowitz condition. We prove two
multiplicity theorems producing two nodal solutions, and answer two open questions
posed by Aizicovici et al. (2013) and by Barletta and Papageorgiou (2014). Our
approach uses variational methods together with suitable truncation techniques
and flow invariance arguments.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω and let 1 < p < ∞. In this paper we study
the nonlinear nonhomogeneous Dirichlet boundary value problem

− div a(z,Du(z)) = f(z, u(z)) in Ω , u|∂Ω = 0, (1)

and the nonlinear nonhomogeneous Neumann boundary value problem

− div a(z,Du(z)) = f(z, u(z)) in Ω ,
∂u

∂n
|∂Ω = 0, (2)

where n denotes the outward unit normal vector on ∂Ω , and a : Ω × RN → RN is a continuous map such
that, for every z ∈ Ω , a(z, ·) is strictly monotone on RN , while (z, y) → a(z, y) is C1 on Ω ×(RN \{0}). Also,
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the reaction term f(z, x) : Ω × R → R is assumed to be a Carathéodory function (that is, for all x ∈ R, the
function z → f(z, x) is measurable and for almost all z ∈ Ω , the function x → f(z, x) is continuous), which
exhibits (p − 1)-superlinear growth near ±∞ but without satisfying the usual (in such cases) Ambrosetti–
Rabinowitz condition (the AR-condition for short). Instead, we employ an alternative weaker condition,
which incorporates in our framework functions with “slower” growth near ±∞. In addition, we assume that
the reaction term f(z, x) admits zeros of constant sign. Our goal is to prove two multiplicity theorems
producing two nodal solutions for such problems.

Recently, multiplicity results were proved for superlinear equations driven by nonhomogeneous differ-
ential operators. We refer to the works of Aizicovici–Papageorgiou–Staicu [1], Papageorgiou–Rocha [2],
Papageorgiou–Winkert [3] (Dirichlet problems), Aizicovici–Papageorgiou–Staicu [4], Barletta–Papageorgiou
[5], Hu–Papageorgiou [6] (Neumann problems), Hu–Papageorgiou [7] (Dirichlet and Neumann problems)
and Papageorgiou–Rădulsecu [8], Papageorgiou–Winkert [9] (Robin problems). None of the works in [1,2,5,8]
produces nodal solutions and instead they generate at most five nontrivial solutions. The authors in [3,4,6,7,9]
assume that the reaction term f(z, ·) is concave (i.e., (p−1)-sublinear) near zero, and produce a nodal solution
by establishing two extremal constant sign solutions. In the particular case of the Dirichlet (p, 2)-equations,
using Morse theory and strengthening the regularity of f(z, ·), namely, assuming that f(z, ·) ∈ C1(R) and

f ′
x(z, 0) ∈ [λ̂m, λ̂m+1], f ′

x(z, 0) ̸= λ̂m, f ′
x(z, 0) ̸= λ̂m+1

for some m ≥ 2, with λ̂m being the mth eigenvalue of (−∆, H1
0 (Ω)), the authors in [3,7] generate a second

nodal solution.
Our work is closely related to the papers of Aizicovici–Papageorgiou–Staicu [1] and Barletta–Papageorgiou

[5] and in fact it complements them. More precisely, the authors in [1,5] produced five nontrivial solutions,
four of constant sign, but they were unable to determine the sign of the fifth solution. Here, by using the two
constant sign solutions obtained in [1, Theorem 2; 6, Theorem 4.1], we show that the fifth solution is nodal.
Moreover, we derive the sixth solution being nodal for problems (1) and (2). Our results give an answer to two
open questions raised by Aizicovici–Papageorgiou–Staicu [1, Remarks, p. 173] and Barletta–Papageorgiou
[5, Remark 4.1, p. 911].

We stress that our results are proved without assuming any differentiability and concavity near zero on
f(z, ·) (see hypotheses H1(f) and H2(f) below). Our approach is variational based on the critical point theory
coupled with suitable truncation techniques and flow invariance arguments. The main mathematical tools
which will be used in this paper are recalled in the next section for the convenience of the reader. We also
present the hypotheses on the map a(·, ·) and state some useful consequences of them.

2. Mathematical background-hypotheses

In the analysis of problems (1) and (2), we will use the Sobolev spaces W 1,p
0 (Ω) and W 1,p(Ω), respectively.

By ∥·∥ we denote the norm of the Sobolev space W 1,p(Ω) defined by

∥u∥ =
(
∥u∥pp + ∥Du∥pp

) 1
p for all u ∈ W 1,p(Ω),

where ∥·∥s stands for the norm in Ls(Ω) (1 ≤ s ≤ +∞). Also, by ∥·∥ we denote the norm of the Sobolev
space W 1,p

0 (Ω), that is

∥u∥ = ∥Du∥p for all u ∈ W 1,p
0 (Ω)

(by virtue of the Poincaré inequality). However, no confusion is possible, since it will be clear from the
context which norm is used. By |·| we denote the norm on RN , by (·, ·)RN the inner product in RN and by
|·|N the Lebesgue measure on RN . We will also use the following Banach spaces:

C1
0 (Ω) = {u ∈ C1(Ω) : u|∂Ω = 0} and C1(Ω).
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