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a b s t r a c t

We perform mathematical analysis of the biofilm development process. A model
describing biomass growth is proposed: It arises from coupling three parabolic
nonlinear equations: a biomass equation with degenerate and singular diffusion,
a nutrient transport equation with a biomass-density dependent diffusion, and an
equation of the Navier–Stokes type, describing the fluid flow in which the biofilm
develops. This flow is subject to a biomass’ density-dependent obstacle. The model
is treated as a system of three inclusions, or variational inequalities; the equation
of the Navier–Stokes type causes major difficulties for the system’s solvability.
Our approach is based on the recent development of the theory on Navier–Stokes
variational inequalities.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

It is quite important for our future to find clean and reproducible materials and energy resources. In this
connection, biomass has been noticed for the last thirty years. Biomass growth is a process of aggregation
of some living organisms transported in fluids (liquids or gases), usually sticking to the walls of the fluid
container, and thus influencing the flow itself. It also involves nutrient transport and consumption. It can
occur in air, water, soil penetrated by any fluid, blood. Only little is known about mathematical models of
this mechanism. In particular, the process occurs in fluids, but models coupled with hydrodynamics have
been seldom analyzed.

In [1], such a biomass growth model coupled with fluid dynamics has been proposed in the three
dimensional space. However, as far as we know, no theoretical results appeared in this context. The model
assumed a sharp interface between the (solid) biomass and the liquid. In the present paper we propose
an analogous mathematical model of biomass growth dynamics in a fluid, postulating, in place of a sharp
interface, a thicker layer, considered as a mixture of both phases — just as in the weak formulation of a
solid–liquid phase transition.
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For other formulations of biomass growth with taxis terms, see [2]. These formulations are not explicitly
included in our formulation, but can be easily obtained by a modification.

Let us recall in more detail the mathematical full model proposed in [1]. Let Ω ⊂ R3 be a container in
which biomass growth takes place. The process is described in terms of three unknown functions v(x, t),
w(x, t) and u(x, t) which are respectively the velocity of the fluid, the nutrient concentration and the biomass
density at a point x ∈ Ω and time t ≥ 0. They are governed by the following system:

(H0) vt + (v · ∇)v − ν∆v = −1
ρ

∇P, div v = 0, in {(x, t)|u(x, t) = 0},

where ρ is the constant density and P is the pressure in the fluid,
(N0) wt + v · ∇w − div (d(u)∇w) = −f(w)u in Ω , t > 0,

where f(w) = k1w

k2 + w
for positive constants k1, k2,

(B0) ut − ∆d1(u) + bu = f(w)u in Ω , t > 0,

subject to suitable initial and boundary conditions. This model is derived under the postulate that the fluid
cannot penetrate into the solid biomass (u > 0), the nutrient is convective by v · ∇w and diffusive with
biomass-density dependent coefficient d(u), and the diffusion of biomass is very slow near the interface u = 0,
but very fast near the maximum density u = u∗. The function f is the nutrient consumption term and b is
a positive constant.

In this paper, we propose some relaxations and modifications into the above model, postulating that:

(i) The biomass density u(x, t) is non-negative and it has the finite maximum value u∗, i.e. 0 ≤ u(x, t) ≤
u∗. For some δ0 ∈ (0, u∗), which is fixed, we postulate that the region of high density δ0 ≤ u(x, t) ≤ u∗

is solid, and that of low density 0 < u(x, t) < δ0 is the interface layer between the solid biomass and
the liquid. In such a layer, the behavior of u may correspond to the dynamics of planktonic biomass
floating in the liquid, cf. e.g. [3].
This causes a biomass dependent constraint on the fluid’s velocity. The constraint is written as:

|v(x, t)| ≤ p0(uε(x, t)),

where p0(r) : (0, u∗] → [0,∞) is a C1, non-negative and non-increasing function on (0, u∗] such that
(see Fig. 1(i)):

lim
r↓0

p0(r) = ∞, p′
0(r) < 0, ∀r ∈ (0, δ0), p0(r) = 0, ∀r ∈ [δ0, u

∗]; (1.1)

on the other hand uε := ρε ∗ u is the local spatial-average of u(x, t) by means of the usual mollifier
ρε(x) (see Section 2 for details).

(ii) The nutrient concentration w(x, t) is non-negative and has the threshold value 1, i.e. 0 ≤ w(x, t) ≤ 1.
Also, we suppose that there is no nutrient supply from the exterior. The diffusion coefficient d(u)
depends on the biomass density u and

cd ≤ d(r) ≤ c′
d, |d(r1) − d(r2)| ≤ L(d)|r1 − r2|, ∀r1, r2 ∈ R, (1.2)

where cd, c
′
d and L(d) are positive constants (see Fig. 1(ii)). The function f(w)u, appearing in biomass

density and nutrient transport equations, is called the nutrient consumption, and in our model we
suppose that

f(w) is of C1 and Lipschitz in w ∈ R, f(0) ≤ 0 and f(1) ≥ 0. (1.3)
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