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a b s t r a c t

We study the existence of weak solutions to the two-phase fluid model with
congestion constraint. The model encompasses the flow in the uncongested regime
(compressible) and the congested one (incompressible) with the free boundary
separating the two phases. The congested regime appears when the density in the
uncongested regime ϱ(t, x) achieves a threshold value ϱ∗(t, x) that describes the
comfort zone of individuals. This quantity is prescribed initially and transported
along with the flow. We prove that this system can be approximated by the fully
compressible Navier–Stokes system with a singular pressure, supplemented with
transport equation for the congestion density. We also present the application of
this approximation for the purposes of numerical simulations in the one-dimensional
domain.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Our aim is to analyse the free-boundary two-phase fluid system that could be used to model the
congestions in the large group of individuals in a bounded area. Individuals are just the agents that have
their own preferences for how close they let the closest neighbour to approach and they carry this information
with them in the course of motion. They do not follow any neighbour trying to align their velocities, nor
they are trying to reach a certain target, as for example, the evacuation point. We simply prescribe their
initial velocity that determines their direction of motion and check how the individual preferences as well
as the initial distribution of the agents determines creation of congestions. Such model could be used as a
building block of more involved crowds modelling [1], some progress in this direction has been made in our
recent numerical work [2].
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Crowd modelling is a problem of strategic importance for safety reasons. It has been studied in many
parallel approaches. We can distinguish, for example, the mean-field game models [3,4], in which the
individuals behave as the players following some strategy, or optimizing certain cost; the microscopic models
which describe precise position and velocity of an individual (Individual-Based-Models) using Newtonian
framework [5–8]; or the macroscopic models formulated in the language developed for the fluids [9–13].
The behaviour of the crowd in the later is characterized by some averaged quantities such as the number
density or mean velocity. The macroscopic models, although less precise than the microscopic ones, are
computationally more affordable. Moreover, they allow for asymptotic studies that proved to be useful for
understanding various aspects like: swarming or pattern formation observed in the experiments.

It is an extensive field of research to develop continuum models that are able to exhibit features of the
kinetic approach. Although it would be desirable to use computationally cheap fluid approach to describe
the crowd dynamics, the nowadays models are not developed enough to recreate behaviour observed in real
world. In this paper we present, as far as we know, the first mathematical result for the fluid model that
incorporates various sizes of the individuals/particles and their inhomogeneities. Similar approach has been
recently applied in [14] in the context of granular media flow with memory effects. In order to use this model
for more specific applications, its current version needs to be supplemented with agents specific features and
we postpone this topic to further research.

Our system writes as follows:

∂tϱ+ div(ϱu) = 0, (1a)

∂t(ϱu) + div(ϱu ⊗ u) + ∇π + ∇p
(
ϱ

ϱ∗

)
− divS(u) = 0, (1b)

∂tϱ
∗ + u · ∇ϱ∗ = 0, (1c)

0 ≤ ϱ ≤ ϱ∗, (1d)

divu = 0 in {ϱ = ϱ∗}, (1e)

π ≥ 0 in {ϱ = ϱ∗}, π = 0 in {ϱ < ϱ∗}. (1f)

with the unknowns: ϱ = ϱ(t, x) – the mass density, u = u(t, x) – the velocity vector field, ϱ∗ = ϱ∗(t, x) – the
congestion density, also referred to as the barrier or the threshold density, and π – the congestion pressure,
that appears only when ϱ = ϱ∗.

The barotropic pressure is an explicit function of ϱ
ϱ∗

p

(
ϱ

ϱ∗

)
=

(
ϱ

ϱ∗

)γ

, γ > 1, (2)

and plays the role of the background pressure.
The stress tensor S is a known function of u, characteristic for the Newtonian fluid, namely

S = S(u) = 2µD(u) + λdivu I, µ > 0, 2µ+ λ > 0, (3)

where D(u) = (∇u + ∇T u)/2 denotes the symmetric part of the gradient of u, and I = I3 is the identity
matrix.

In the system (1) variable ϱ∗ models preferences of the individuals, it is given initially and then transported
with the flow. Therefore, ϱ∗ depends on time and position, but more importantly it depends on initial
configuration ϱ∗

0. The form of ϱ∗ relaxes the restrictions from the models studied in [15,16], where the
threshold density ϱ∗ was either assumed to be constant or independent of time. This allows to cover more
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