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a b s t r a c t

In this paper, we investigate the large time behavior of a global solution for the
nonlinear beam equation with a weak damping term in weighted Sobolev spaces.
We proved the unconditional global well-posedness for small initial data and sharp
decay estimates of the global solution in the same framework. The crucial part of our
proof is a smoothing effect from the linear principal part to overcome the regularity
loss structure in the weighted estimates.
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1. Introduction

In this paper we study the Cauchy problem for the following semilinear damped beam equation

∂2
t u+ ∂tu+ ∂4

xu− α∂2
xu = ∂xf(∂xu), t > 0, x ∈ R, (1.1)

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ R, (1.2)

where u = u(t, x) : (0, T ) × R → R is the unknown function, u0(x) and u1(x) are given initial data and α

is a positive constant. Without loss of generality, we assume α = 1 for simplicity. We also assume that the
nonlinear function f ∈ C∞(R) satisfies that for some integer p ≥ 2,

f(v) = O(|v|p) as v → 0. (1.3)

Eq. (1.1) arises from the movement of the study of the mechanical movements of shape memory alloys of
a constant mass density (cf. [1]). For the details of the physical background of Eq. (1.1), see [1,2] and the
reference therein. In the mathematical point of view, we can expect that the solutions of Eq. (1.1) have the
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dissipative properties which arise from the weak damping term +∂tu and, at the same time, the dispersive
properties from the 4th order derivative term +∂4

xu.
Our purpose here is to show sharp decay estimates of the global solutions, which satisfy the unconditional

well-posedness, using the decay structure and a smoothing effect from the linear principal parts. Here we
will follow the notion of well-posedness given in [3] (cf. [4–7]): let X and X̃ be function spaces. The initial
value problem is said to locally well posed in X if for each (u0, u1) ∈ X × X̃ there exist T > 0 and a
unique solution u ∈ C([0, T );X) ∩ · · · = YT of the equation, with the map data-solution (u0, u1) → u, being
continuous. In the case, where we can take T > 0 arbitrarily large, we say the problem is globally well posed.
Especially we call the problem satisfies the unconditional global well-posedness if C([0,∞);X) = Y∞ holds.

Before formulating the results of this paper, let us review several known results on (1.1). In the bounded
interval with the 0-Neumann boundary condition, Racke and Shang [1] proved the global well-posedness for
large data in H4 × H2 and the existence of global attractors, applying the energy method. After that, the
author of this paper and Yoshikawa studied the Cauchy problem (1.1)–(1.2) in the series of the papers [2,8,9].
If the nonlinearity is given by f(v) = |v|p−1

v with p ≥ 2, they proved the unconditional global well-posedness
in the energy class H2 × L2 for large data and energy decay estimates in [9] using the energy method
due to Kawashima–Nakao–Ono [10] (see also [11]). On the other hand, for the nonlinearity including the
minus sign case e.g. f(v) = −|v|p−1

v with p ≥ 2, we cannot expect that the classical energy method
works well, since the standard energy is not necessarily non-negative definite. In this situation, Takeda–
Yoshikawa ([2,8]) constructed the unique global solution in the class C([0,∞);L1 ∩H2) for small initial data
(u0, u1) ∈ W 2,1 ∩H2 ×L1 ∩L2 and they also obtained optimal decay estimates and a smoothing effect of the
global solution. Especially, they proved the following two facts. First, when t is large, the solution behaves
likes the Gauss kernel

Gt(x) := 1√
4πt

e− |x|2
4t (1.4)

with the multiple of the constant

M0 :=
∫
R
u0(x) + u1(x) dx. (1.5)

This means that u(t) −M0Gt decays faster than u(t) and M0Gt as t → ∞.
Second, under the additional assumption for the initial data u0, u1 ∈ L1

1 := {(1+ |x|)u ∈ L1}, the solution
satisfies the second order expansion by the Gauss kernel. In other words, u(t) −

∑1
j=0Mj∂

j
xGt − M̃∂xGt

decays faster than u(t) −M0Gt and (M1 + M̃)∂xGt as t → ∞, where

M1 :=
∫
R
(−x)(u0(x) + u1(x)) dx, (1.6)

M̃ :=
∫ ∞

0

∫
R
f(∂xu(τ, x))dxdτ. (1.7)

Later on, Zhang–Li [12] proved the unique existence of the global solution in the class C([0,∞);H2) for
small initial data (u0, u1) ∈ L1 ∩H2 ×L1 ∩L2 and obtained its asymptotic profile. The author of this paper
also obtained the global in time solution and its large time behavior for the slowly decaying data, which
means that initial data u0(x), u1(x) behaves like (1 + x2)−k for 0 < k ≤ 1 in [13].

Here we note that for the Cauchy problem (1.1)–(1.2), the authors in the previous results focused on
the diffusive structure of the solution and they did not discuss the well-posedness. It is well-known that, to
obtain sharp decay properties in [2,8,9,12], the L1 regularity assumption for initial data is essential. On the
other hand, it seems difficult to show the global well-posedness in the L1 framework, since the equation has
the dispersive structure, not only the dissipative one. Then we use the weighed Sobolev space Hs,ℓ defined
by

Hs,ℓ := {u ∈ L2(R)|∥(1 + x2) ℓ2 ∂kxu∥2 < ∞ for 0 ≤ k ≤ s}
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