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traveling wave solutions of this model are fully determined by the threshold values,
that is, the basic reproduction number Ro and the minimal wave speed c*. For
Ro > 1 and ¢ > c¢*, the existence theorem is obtained by the method of auxiliary
system, Schauder’s fixed point theorem and three limiting arguments. For Rg > 1

MSC: and 0 < ¢ < c¢*, the non-existence theorem is derived by applying the two-sided
35Q92 Laplace transform and making full use of the structure of the model. For Rg = 1
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1. Introduction

It is known that the reaction—diffusion systems have been applied to describe a variety of phenomena in
epidemiology and ecology [1-10]. However, nonlocal dispersal is better described as a long range process
rather than as a local one in many situations such as in population ecology, materials science, phase
transition, genetics, neurology and epidemiology [11-18], and nonlocal dispersal models have attracted much
attention [19-40]. Note that in modeling of infectious disease, nonlinear incidence rates have played a vital
role in ensuring that the model can give a reasonable qualitative description for the disease dynamics such
as cholera epidemic spread in Bari in 1973 [41,42].
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Based on the above concerns, in this paper, we introduce a nonlocal dispersal SIR epidemic model with
nonlinear incidence rate
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where S(x,t), I(z,t) and R(z,t) denote the densities of susceptible, infective and removed individuals at
time ¢ and location z, respectively. The parameters d; > 0 (¢ = 1,2, 3) describe the spatial motility of each
class, v stands for the recovery rate of the infective individuals and J * S(z,t), J * I(x,t) and J * R(z, )
represent the standard convolution with space invariable x, namely,
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where u can be either S, I or R. Throughout this paper, we always assume the nonlinear functions f, g and
the kernel J satisfy the following hypotheses:

(H1) f(S) is positive and continuous for S > 0 with f(0) = 0 and f/(S) is positive and bounded for S > 0
with L := maxgeo,0).f'(5);

(H2) g(I) is positive and continuous for I > 0 with g(0) =0, ¢’(I) > 0 and ¢"(I) <0 for I > 0;

(H3) J € C'(R), J(y) = J(—y) >0, [ J(y)dy =1 and J is compactly supported;
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Taking a first order approximation by Fourier transform and Taylor formula [43,44], model (1.1) is changed
to a reaction—diffusion SIR model

0S(z,t) 0?8 (z,t)

at = d1 31‘2 —f(S(x,t))g(I(x,t)),
MDD | (s 0)g(1(0.0) ~1(.), 2

where f and g satisfy (H1) and (H2), respectively. By introducing an auxiliary system and applying
Schauder’s fixed point theorem and a limiting argument, Bai and Wu [1] proved that the subsystem of
(1.2) admits a traveling wave solution (S(z + ct),I(x + ct)) satisfying S(—o00) = S_o, (o) = 0 and
S(+00) = Soo < S_oo if Rg = f(S-0)g’(0)/y > 1 and ¢ > ¢*. On the contrary, if 0 < ¢ < ¢* or
Ro < 1, they applied the two-sided Laplace transform which was first introduced by Carr [45] to obtain the
non-existence of traveling wave solutions for the subsystem of (1.2).

In (1.1), the choice of f(S) =S and g(I) = I leads to the model
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which was considered in [39]. The parameter 3 > 0 denotes the infection rate. Yang et al. [39] established
the existence of nontrivial and nonnegative traveling wave solution by constructing an invariant cone in a
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