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a b s t r a c t

A nonlocal dispersal SIR epidemic model with nonlinear incidence rate is introduced.
It is shown that the existence and non-existence of nontrivial and nonnegative
traveling wave solutions of this model are fully determined by the threshold values,
that is, the basic reproduction number R0 and the minimal wave speed c∗. For
R0 > 1 and c ≥ c∗, the existence theorem is obtained by the method of auxiliary
system, Schauder’s fixed point theorem and three limiting arguments. For R0 > 1
and 0 < c < c∗, the non-existence theorem is derived by applying the two-sided
Laplace transform and making full use of the structure of the model. For R0 = 1
with c > 0 and R0 < 1 with c > 0, the non-existence theorems are also established.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

It is known that the reaction–diffusion systems have been applied to describe a variety of phenomena in
epidemiology and ecology [1–10]. However, nonlocal dispersal is better described as a long range process
rather than as a local one in many situations such as in population ecology, materials science, phase
transition, genetics, neurology and epidemiology [11–18], and nonlocal dispersal models have attracted much
attention [19–40]. Note that in modeling of infectious disease, nonlinear incidence rates have played a vital
role in ensuring that the model can give a reasonable qualitative description for the disease dynamics such
as cholera epidemic spread in Bari in 1973 [41,42].
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Based on the above concerns, in this paper, we introduce a nonlocal dispersal SIR epidemic model with
nonlinear incidence rate⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂S(x, t)
∂t

= d1(J ∗ S(x, t) − S(x, t)) − f(S(x, t))g(I(x, t)),

∂I(x, t)
∂t

= d2(J ∗ I(x, t) − I(x, t)) + f(S(x, t))g(I(x, t))
−γI(x, t),

∂R(x, t)
∂t

= d3(J ∗ R(x, t) − R(x, t)) + γI(x, t),

(1.1)

where S(x, t), I(x, t) and R(x, t) denote the densities of susceptible, infective and removed individuals at
time t and location x, respectively. The parameters di > 0 (i = 1, 2, 3) describe the spatial motility of each
class, γ stands for the recovery rate of the infective individuals and J ∗ S(x, t), J ∗ I(x, t) and J ∗ R(x, t)
represent the standard convolution with space invariable x, namely,

J ∗ u(x, t) =
∫
R

J(x − y)u(y, t)dy =
∫
R

J(y)u(x − y, t)dy,

where u can be either S, I or R. Throughout this paper, we always assume the nonlinear functions f , g and
the kernel J satisfy the following hypotheses:
(H1) f(S) is positive and continuous for S > 0 with f(0) = 0 and f ′(S) is positive and bounded for S ≥ 0
with L := maxS∈[0,∞)f

′(S);
(H2) g(I) is positive and continuous for I > 0 with g(0) = 0, g′(I) > 0 and g′′(I) ≤ 0 for I ≥ 0;
(H3) J ∈ C1(R), J(y) = J(−y) ≥ 0,

∫
R J(y)dy = 1 and J is compactly supported;

(H4) lim
λ→+∞

λ∫
R

J(y)e−λydy
= 0.

Taking a first order approximation by Fourier transform and Taylor formula [43,44], model (1.1) is changed
to a reaction–diffusion SIR model⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂S(x, t)
∂t

= d1
∂2S(x, t)

∂x2 − f(S(x, t))g(I(x, t)),

∂I(x, t)
∂t

= d2
∂2I(x, t)

∂x2 + f(S(x, t))g(I(x, t)) − γI(x, t),

∂R(x, t)
∂t

= d3
∂2R(x, t)

∂x2 + γI(x, t),

(1.2)

where f and g satisfy (H1) and (H2), respectively. By introducing an auxiliary system and applying
Schauder’s fixed point theorem and a limiting argument, Bai and Wu [1] proved that the subsystem of
(1.2) admits a traveling wave solution (S(x + ct), I(x + ct)) satisfying S(−∞) = S−∞, I(±∞) = 0 and
S(+∞) = S∞ < S−∞ if R0 = f(S−∞)g′(0)/γ > 1 and c > c∗. On the contrary, if 0 < c < c∗ or
R0 ≤ 1, they applied the two-sided Laplace transform which was first introduced by Carr [45] to obtain the
non-existence of traveling wave solutions for the subsystem of (1.2).

In (1.1), the choice of f(S) = S and g(I) = I leads to the model⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂S(x, t)
∂t

= d1(J ∗ S(x, t) − S(x, t)) − βS(x, t)I(x, t),

∂I(x, t)
∂t

= d2(J ∗ I(x, t) − I(x, t)) + βS(x, t)I(x, t) − γI(x, t),

∂R(x, t)
∂t

= d3(J ∗ R(x, t) − R(x, t)) + γI(x, t),

(1.3)

which was considered in [39]. The parameter β > 0 denotes the infection rate. Yang et al. [39] established
the existence of nontrivial and nonnegative traveling wave solution by constructing an invariant cone in a
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