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a b s t r a c t

Ferromagnetic nanotubes are proposed as an alternative to ferromagnetic nanowires
for data-storage applications. In this paper, we consider a two-dimensional model
for such devices and we establish the stability of moving walls in the Walker regime
when the tube is subject to a small magnetic field.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Domain walls formation and propagation in ferromagnetic nanowires are intensively studied. Indeed, their
possible applications for data recording (see [1]) or in nano-electronics (see [2]) are very promising. Such
devices are modeled by a 1d-Landau–Lifschitz equation, and existence and stability of one-wall profiles are
established (see [3–6] and the references therein).

In [7], the authors propose to use ferromagnetic nanotubes instead of ferromagnetic nanowires or nano
strips in order to deal with domain wall motion in the Walker regime, which is stable and more reliable for
applications. In the present work we exhibit a 2d-model for ferromagnetic nanotubes and we study domain
wall dynamics in this model for a small applied magnetic field.

Let us recall the 3-dimensional model for a ferromagnetic sample O ⊂ R3. We denote by (u · v) the
canonical scalar product of u by v in R3 and by |.| the associated norm. The canonical basis of R3 is denoted
by (e1, e2, e3) and × is the usual cross product.

Ferromagnetic materials are characterized by a spontaneous magnetization described by the magnetic
moment M defined on R+ × O and satisfying the saturation constraint

|M(t, x)| = Ms a.e., (1.1)
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where Ms is constant. The magnetic moment satisfies the Landau–Lifschitz equation
∂M

∂t = −γM ×He − αγ

Ms
M × (M ×He), (1.2)

in which γ > 0 is the gyromagnetic ratio, α > 0 is the damping coefficient, He is the effective field given by:

He = A

µ0M2
s

∆M +Hd(M) +Happ. (1.3)

Here, A > 0 is the exchange coefficient, µ0 is the permeability of the vacuum, Happ is the applied magnetic
field, and Hd(M) is the demagnetizing field generated by the magnetization M . In the quasi-stationary
model, the operator Hd is given by {

div (Hd(M) +M) = 0,
curl Hd(M) = 0, (1.4)

where M is the extension of M by zero outside O.
The energy associated to a configuration M is given by:

E(M) = A

2M2
s

∫
O

|∇M |2dx+ µ0

2

∫
R3

|Hd(M)|2 dx− µ0

∫
O
Ha ·M dx,

and we have He = − 1
µ0
∂M E .

Existence of weak or strong solutions for (1.2) is addressed in several papers (see [8–15]).
We focus now on the case of a thin nanotube of axis Re1 with circular section. The nanotube is assimilated

to the cylinder R× ρS1 =
{

(x, y, z) ∈ R3, y2 + z2 = ρ2}. We assume that a magnetic field Happ is applied
in the direction of the tube axis: Happ = Hae1, Ha ∈ R. We use the two-dimensional model of ferromagnetic
thin film obtained in [16] and [17], in which the demagnetizing field reduces to an anisotropic local term
forcing M to be tangent to the thin domain. In the case of our nanotube the demagnetizing field is described
by the term −(M · n)n, derived from the limit demagnetizing energy µ0

4
∫
R×S1 |M · n|2dσ, where n is the

unit normal vector to the cylinder surface.
In cylindrical coordinates, we write y = ρ cos y and z = ρ sin y, and we obtain the following 2d model:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M : (t, x, y) → S2, 2π-periodic in the variable y,
∂M

∂t = −γM × h(M) − αγ

Ms
M × (M × h(M)),

h(M) = A

µ0M2
s

∂2M

∂x2 + A

µ0M2
s ρ

2
∂2M

∂y2 − (M · n(y))n(y) +Hae1,

(1.5)

where the unit normal vector n is given by n(y) =
(

0
cos y
sin y

)
.

We denote n⊥(y) =
(

0
− sin y
cos y

)
. By the rescaling t = γAt

µ0Msρ2 and x = x
ρ , we describe M in the frame

(e1,n(y),n⊥(y)) writing:

M(t, x, y) = Ms

(
m1

(
γAt

µ0Msρ2 ,
x
ρ
, y

)
e1 + m2

(
γAt

µ0Msρ2 ,
x
ρ
, y

)
n(y) + m3

(
γAt

µ0Msρ2 ,
x
ρ
, y

)
n⊥(y)

)
.

We obtain that M satisfies (1.5) if and only if m =
(

m1
m2
m3

)
satisfies⎧⎪⎪⎨⎪⎪⎩

m : (t, x, y) → S2, 2π-periodic in the variable y,
∂m
∂t

= −m × h(m) − αm × (m × h(m)),

h(m) = ∂xxm + ∂yym + 2e1 × ∂ym + m1e1 − κm3e3 + hae1,

(1.6)

where κ = µ0M2
s ρ2

A and ha = µ0Msρ2

A Ha.
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