Optimal convergence rates for the strong solutions to the compressible Navier-Stokes equations with potential force

Wenjun Wang
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, PR China

A R T I C L E I N F O

Article history:

Received 28 February 2014
Received in revised form 18
September 2016
Accepted 19 September 2016
Available online 14 October 2016
Keywords:
Compressible Navier-Stokes
equations
Potential force
Global existence
Optimal convergence rate

Abstract

In this paper, we consider the effect of external force on the large-time behavior of solutions to the Cauchy problem for the three-dimensional full compressible Navier-Stokes equations. We construct the global unique solution near the stationary profile to the system for the small $H^{2}\left(\mathbb{R}^{3}\right)$ initial data. Moreover, the optimal $L^{p}-L^{2}(1 \leq p \leq 2)$ time decay rates of the solution to the system are established via a low frequency and high frequency decomposition.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is concerned with the Cauchy problem of the full compressible Navier-Stokes equations affected by the external potential force in \mathbb{R}^{3} :

$$
\left\{\begin{array}{l}
\rho_{t}+\nabla \cdot(\rho u)=0, \tag{1.1}\\
\rho\left[u_{t}+(u \cdot \nabla) u\right]+\nabla P(\rho, \theta)=\mu \Delta u+\left(\mu+\mu^{\prime}\right) \nabla(\nabla \cdot u)+\rho F, \\
\rho c_{V}\left[\theta_{t}+(u \cdot \nabla) \theta\right]+\theta P_{\theta}(\rho, \theta) \nabla \cdot u=\kappa \Delta \theta+\Psi[u],
\end{array}\right.
$$

and the initial data

$$
\begin{equation*}
(\rho, u, \theta)(0, x)=\left(\rho_{0}, u_{0}, \theta_{0}\right)(x) \rightarrow\left(\rho_{\infty}, 0, \theta_{\infty}\right), \quad \text { as }|x| \rightarrow \infty . \tag{1.2}
\end{equation*}
$$

Here the unknown functions $\rho>0, u=\left(u_{1}, u_{2}, u_{3}\right)$, and θ denote the density, the velocity and the temperature; $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ is the space variable, $t>0$ is the time variable; $P=P(\rho, \theta), \mu, \mu^{\prime}$, $\kappa>0$, and c_{V} are the pressure, the first and second viscosity coefficients, the coefficient of heat conduction,

[^0]and the specific heat at constant volume, respectively. In addition, $F=F(x)$ is an external force and $\Psi=\Psi[u]$ is the dissipation function:
\[

$$
\begin{equation*}
\Psi[u]=\frac{\mu}{2} \sum_{i, j=1}^{3}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)^{2}+\mu^{\prime} \sum_{j=1}^{3}\left(\partial_{j} u_{j}\right)^{2} . \tag{1.3}
\end{equation*}
$$

\]

Throughout this paper, we assume that the above physical parameters satisfy $\mu>0$ and $2 \mu+3 \mu^{\prime} \geq 0$ which deduce $\mu+\mu^{\prime}>0 . \rho_{\infty}$ and θ_{∞} are positive constants, and $P(\rho, \theta)$ is smooth in a neighborhood of ($\rho_{\infty}, \theta_{\infty}$) with $P_{\rho}\left(\rho_{\infty}, \theta_{\infty}\right)>0$ and $P_{\theta}\left(\rho_{\infty}, \theta_{\infty}\right)>0$.

In this work, we only consider the potential force, that is, $F=-\nabla \Phi(x)$. Under aforementioned assumptions, the existence of the stationary solution to the problem (1.1) and (1.2) has been established in [1]. The solution ($\rho_{*}, u_{*}, \theta_{*}$) in a neighborhood of ($\rho_{\infty}, 0, \theta_{\infty}$) is given by

$$
\begin{equation*}
\int_{\rho_{\infty}}^{\rho_{*}(x)} \frac{P_{\rho}\left(\eta, \theta_{\infty}\right)}{\eta} \mathrm{d} \eta+\Phi(x)=0, \quad u_{*}(x)=0, \quad \theta_{*}(x)=\theta_{\infty}, \tag{1.4}
\end{equation*}
$$

and satisfies

$$
\begin{align*}
& \left\|\rho_{*}-\rho_{\infty}\right\|_{H^{k}\left(\mathbb{R}^{3}\right)} \leq C\|\Phi\|_{H^{k}\left(\mathbb{R}^{3}\right)}, \quad 0 \leq k \leq 4, \tag{1.5}\\
& \sum_{k=1}^{4}\left\|(1+|x|) \nabla^{k}\left(\rho_{*}-\rho_{\infty}\right)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \leq C \sum_{k=1}^{4}\left\|(1+|x|) \nabla^{k} \Phi\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} . \tag{1.6}
\end{align*}
$$

We will construct the global unique solution to (1.1) near the steady state ($\rho_{*}, 0, \theta_{\infty}$) when the initial perturbation belongs to the Sobolev space $H^{2}\left(\mathbb{R}^{3}\right)$. Our main results are stated as the following theorem.

Theorem 1.1. Let $\left(\rho_{0}-\rho_{\infty}, u_{0}, \theta_{0}-\theta_{\infty}\right) \in H^{2}\left(\mathbb{R}^{3}\right)$, there exists some small constant $\varepsilon>0$ such that if

$$
\begin{equation*}
\left\|\left(\rho_{0}-\rho_{\infty}, u_{0}, \theta_{0}-\theta_{\infty}\right)\right\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\|\Phi\|_{H^{4}\left(\mathbb{R}^{3}\right)}+\sum_{k=1}^{4}\left\|(1+|x|) \nabla^{k} \Phi\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \leq \varepsilon \tag{1.7}
\end{equation*}
$$

then the initial value problem (1.1) and (1.2) admits a unique solution (ρ, u, θ) globally in time which satisfies

$$
\begin{aligned}
& \rho-\rho_{*} \in C^{0}\left([0, \infty) ; H^{2}\left(\mathbb{R}^{3}\right)\right) \cap C^{1}\left([0, \infty) ; H^{1}\left(\mathbb{R}^{3}\right)\right) \\
& u, \theta-\theta_{\infty} \in C^{0}\left([0, \infty) ; H^{2}\left(\mathbb{R}^{3}\right)\right) \cap C^{1}\left([0, \infty) ; L^{2}\left(\mathbb{R}^{3}\right)\right)
\end{aligned}
$$

Moreover, if the initial data $\left(\rho_{0}-\rho_{\infty}, u_{0}, \theta_{0}-\theta_{\infty}\right)$ is bounded in $L^{p}\left(\mathbb{R}^{3}\right)$ for any given $1 \leq p \leq 2$, the solution (ρ, u, θ) enjoys the following decay-in-time estimates:

$$
\begin{align*}
& \left\|\nabla\left(\rho-\rho_{*}, u, \theta-\theta_{\infty}\right)\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} \leq C(1+t)^{-\frac{3}{2}\left(\frac{1}{p}-\frac{1}{2}\right)-\frac{1}{2}} \quad \text { for all } t \geq 0, \tag{1.8}\\
& \left\|\left(\rho-\rho_{*}, u, \theta-\theta_{\infty}\right)\right\|_{L^{q}\left(\mathbb{R}^{3}\right)} \leq C(1+t)^{-\frac{3}{2}\left(\frac{1}{p}-\frac{1}{q}\right)} \quad \text { for all } t \geq 0,2 \leq q \leq 6, \tag{1.9}\\
& \left\|\partial_{t}\left(\rho-\rho_{*}, u, \theta-\theta_{\infty}\right)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \leq C(1+t)^{-\frac{3}{2}\left(\frac{1}{p}-\frac{1}{2}\right)-\frac{1}{2}} \quad \text { for all } t \geq 0, \tag{1.10}
\end{align*}
$$

for some positive constant C.

Remark 1.1. In Theorem 1.1, using the Sobolev imbedding inequalities in Lemma 2.1, (1.7) together with (1.5) and (1.6) yields

$$
\begin{equation*}
\left\|\rho_{*}-\rho_{\infty}\right\|_{H^{4}\left(\mathbb{R}^{3}\right)}+\sum_{k=1}^{3}\left\|(1+|x|) \nabla^{k}\left(\rho_{*}-\rho_{\infty}\right)\right\|_{L^{2}\left(\mathbb{R}^{3}\right) \cap L^{3}\left(\mathbb{R}^{3}\right)} \leq C \varepsilon . \tag{1.11}
\end{equation*}
$$

https://daneshyari.com/en/article/7222222

Download Persian Version:
https://daneshyari.com/article/7222222

Daneshyari.com

[^0]: E-mail address: wwj001373@hotmail.com.

