Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

www.elsevier.com/locate/nonrwa

Optimal convergence rates for the strong solutions to the compressible Navier–Stokes equations with potential force

Wenjun Wang

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, PR China

ARTICLE INFO

Article history: Received 28 February 2014 Received in revised form 18 September 2016 Accepted 19 September 2016 Available online 14 October 2016

Keywords: Compressible Navier–Stokes equations Potential force Global existence Optimal convergence rate

1. Introduction

This paper is concerned with the Cauchy problem of the full compressible Navier–Stokes equations affected by the external potential force in \mathbb{R}^3 :

$$\begin{cases} \rho_t + \nabla \cdot (\rho u) = 0, \\ \rho[u_t + (u \cdot \nabla)u] + \nabla P(\rho, \theta) = \mu \Delta u + (\mu + \mu') \nabla (\nabla \cdot u) + \rho F, \\ \rho c_V[\theta_t + (u \cdot \nabla)\theta] + \theta P_{\theta}(\rho, \theta) \nabla \cdot u = \kappa \Delta \theta + \Psi[u], \end{cases}$$
(1.1)

and the initial data

$$(\rho, u, \theta)(0, x) = (\rho_0, u_0, \theta_0)(x) \to (\rho_\infty, 0, \theta_\infty), \quad \text{as } |x| \to \infty.$$

$$(1.2)$$

Here the unknown functions $\rho > 0$, $u = (u_1, u_2, u_3)$, and θ denote the density, the velocity and the temperature; $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ is the space variable, t > 0 is the time variable; $P = P(\rho, \theta)$, μ , μ' , $\kappa > 0$, and c_V are the pressure, the first and second viscosity coefficients, the coefficient of heat conduction,

 $\label{eq:http://dx.doi.org/10.1016/j.nonrwa.2016.09.005} 1468-1218/© 2016$ Elsevier Ltd. All rights reserved.

In this paper, we consider the effect of external force on the large-time behavior of solutions to the Cauchy problem for the three-dimensional full compressible Navier–Stokes equations. We construct the global unique solution near the stationary profile to the system for the small $H^2(\mathbb{R}^3)$ initial data. Moreover, the optimal L^p-L^2 $(1 \le p \le 2)$ time decay rates of the solution to the system are established via a low frequency and high frequency decomposition.

 \odot 2016 Elsevier Ltd. All rights reserved.

E-mail address: wwj001373@hotmail.com.

and the specific heat at constant volume, respectively. In addition, F = F(x) is an external force and $\Psi = \Psi[u]$ is the dissipation function:

$$\Psi[u] = \frac{\mu}{2} \sum_{i,j=1}^{3} (\partial_i u_j + \partial_j u_i)^2 + \mu' \sum_{j=1}^{3} (\partial_j u_j)^2.$$
(1.3)

Throughout this paper, we assume that the above physical parameters satisfy $\mu > 0$ and $2\mu + 3\mu' \ge 0$ which deduce $\mu + \mu' > 0$. ρ_{∞} and θ_{∞} are positive constants, and $P(\rho, \theta)$ is smooth in a neighborhood of $(\rho_{\infty}, \theta_{\infty})$ with $P_{\rho}(\rho_{\infty}, \theta_{\infty}) > 0$ and $P_{\theta}(\rho_{\infty}, \theta_{\infty}) > 0$.

In this work, we only consider the potential force, that is, $F = -\nabla \Phi(x)$. Under aforementioned assumptions, the existence of the stationary solution to the problem (1.1) and (1.2) has been established in [1]. The solution (ρ_*, u_*, θ_*) in a neighborhood of $(\rho_\infty, 0, \theta_\infty)$ is given by

$$\int_{\rho_{\infty}}^{\rho_*(x)} \frac{P_{\rho}(\eta, \theta_{\infty})}{\eta} \mathrm{d}\eta + \Phi(x) = 0, \qquad u_*(x) = 0, \qquad \theta_*(x) = \theta_{\infty}, \tag{1.4}$$

and satisfies

$$\|\rho_* - \rho_\infty\|_{H^k(\mathbb{R}^3)} \le C \|\Phi\|_{H^k(\mathbb{R}^3)}, \quad 0 \le k \le 4,$$
(1.5)

$$\sum_{k=1}^{4} \|(1+|x|)\nabla^{k}(\rho_{*}-\rho_{\infty})\|_{L^{2}(\mathbb{R}^{3})} \leq C \sum_{k=1}^{4} \|(1+|x|)\nabla^{k}\Phi\|_{L^{2}(\mathbb{R}^{3})}.$$
(1.6)

We will construct the global unique solution to (1.1) near the steady state $(\rho_*, 0, \theta_{\infty})$ when the initial perturbation belongs to the Sobolev space $H^2(\mathbb{R}^3)$. Our main results are stated as the following theorem.

Theorem 1.1. Let $(\rho_0 - \rho_\infty, u_0, \theta_0 - \theta_\infty) \in H^2(\mathbb{R}^3)$, there exists some small constant $\varepsilon > 0$ such that if

$$\|(\rho_0 - \rho_\infty, u_0, \theta_0 - \theta_\infty)\|_{H^2(\mathbb{R}^3)} + \|\Phi\|_{H^4(\mathbb{R}^3)} + \sum_{k=1}^4 \|(1+|x|)\nabla^k \Phi\|_{L^2(\mathbb{R}^3)} \le \varepsilon,$$
(1.7)

then the initial value problem (1.1) and (1.2) admits a unique solution (ρ , u, θ) globally in time which satisfies

$$\begin{aligned} \rho - \rho_* &\in C^0([0,\infty); H^2(\mathbb{R}^3)) \cap C^1([0,\infty); H^1(\mathbb{R}^3)), \\ u, \theta - \theta_\infty &\in C^0([0,\infty); H^2(\mathbb{R}^3)) \cap C^1([0,\infty); L^2(\mathbb{R}^3)) \end{aligned}$$

Moreover, if the initial data $(\rho_0 - \rho_\infty, u_0, \theta_0 - \theta_\infty)$ is bounded in $L^p(\mathbb{R}^3)$ for any given $1 \le p \le 2$, the solution (ρ, u, θ) enjoys the following decay-in-time estimates:

$$\|\nabla(\rho - \rho_*, u, \theta - \theta_\infty)\|_{H^1(\mathbb{R}^3)} \le C(1+t)^{-\frac{3}{2}\left(\frac{1}{p} - \frac{1}{2}\right) - \frac{1}{2}} \quad for \ all \ t \ge 0, \tag{1.8}$$

$$\|(\rho - \rho_*, u, \theta - \theta_\infty)\|_{L^q(\mathbb{R}^3)} \le C(1+t)^{-\frac{3}{2}\left(\frac{1}{p} - \frac{1}{q}\right)} \quad \text{for all } t \ge 0, \ 2 \le q \le 6, \tag{1.9}$$

$$\|\partial_t (\rho - \rho_*, u, \theta - \theta_\infty)\|_{L^2(\mathbb{R}^3)} \le C(1+t)^{-\frac{3}{2}\left(\frac{1}{p} - \frac{1}{2}\right) - \frac{1}{2}} \quad for \ all \ t \ge 0,$$
(1.10)

for some positive constant C.

Remark 1.1. In Theorem 1.1, using the Sobolev imbedding inequalities in Lemma 2.1, (1.7) together with (1.5) and (1.6) yields

$$\|\rho_* - \rho_\infty\|_{H^4(\mathbb{R}^3)} + \sum_{k=1}^3 \|(1+|x|)\nabla^k(\rho_* - \rho_\infty)\|_{L^2(\mathbb{R}^3) \cap L^3(\mathbb{R}^3)} \le C\varepsilon.$$
(1.11)

Download English Version:

https://daneshyari.com/en/article/7222222

Download Persian Version:

https://daneshyari.com/article/7222222

Daneshyari.com