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a b s t r a c t

In this paper, we consider the effect of external force on the large-time behavior
of solutions to the Cauchy problem for the three-dimensional full compressible
Navier–Stokes equations. We construct the global unique solution near the stationary
profile to the system for the small H2(R3) initial data. Moreover, the optimal
Lp–L2 (1 ≤ p ≤ 2) time decay rates of the solution to the system are established
via a low frequency and high frequency decomposition.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is concerned with the Cauchy problem of the full compressible Navier–Stokes equations affected
by the external potential force in R3:

ρt +∇ · (ρu) = 0,
ρ[ut + (u · ∇)u] +∇P (ρ, θ) = µ∆u+ (µ+ µ′)∇(∇ · u) + ρF,
ρcV [θt + (u · ∇)θ] + θPθ(ρ, θ)∇ · u = κ∆θ + Ψ [u],

(1.1)

and the initial data

(ρ, u, θ)(0, x) = (ρ0, u0, θ0)(x)→ (ρ∞, 0, θ∞), as |x| → ∞. (1.2)

Here the unknown functions ρ > 0, u = (u1, u2, u3), and θ denote the density, the velocity and the
temperature; x = (x1, x2, x3) ∈ R3 is the space variable, t > 0 is the time variable; P = P (ρ, θ), µ, µ′,
κ > 0, and cV are the pressure, the first and second viscosity coefficients, the coefficient of heat conduction,
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and the specific heat at constant volume, respectively. In addition, F = F (x) is an external force and
Ψ = Ψ [u] is the dissipation function:

Ψ [u] = µ2

3
i,j=1

(∂iuj + ∂jui)2 + µ′
3
j=1

(∂juj)2. (1.3)

Throughout this paper, we assume that the above physical parameters satisfy µ > 0 and 2µ+ 3µ′ ≥ 0 which
deduce µ+ µ′ > 0. ρ∞ and θ∞ are positive constants, and P (ρ, θ) is smooth in a neighborhood of (ρ∞, θ∞)
with Pρ(ρ∞, θ∞) > 0 and Pθ(ρ∞, θ∞) > 0.

In this work, we only consider the potential force, that is, F = −∇Φ(x). Under aforementioned
assumptions, the existence of the stationary solution to the problem (1.1) and (1.2) has been established
in [1]. The solution (ρ∗, u∗, θ∗) in a neighborhood of (ρ∞, 0, θ∞) is given by ρ∗(x)

ρ∞

Pρ(η, θ∞)
η

dη + Φ(x) = 0, u∗(x) = 0, θ∗(x) = θ∞, (1.4)

and satisfies

∥ρ∗ − ρ∞∥Hk(R3) ≤ C∥Φ∥Hk(R3), 0 ≤ k ≤ 4, (1.5)
4
k=1
∥(1 + |x|)∇k(ρ∗ − ρ∞)∥L2(R3) ≤ C

4
k=1
∥(1 + |x|)∇kΦ∥L2(R3). (1.6)

We will construct the global unique solution to (1.1) near the steady state (ρ∗, 0, θ∞) when the initial
perturbation belongs to the Sobolev space H2(R3). Our main results are stated as the following theorem.

Theorem 1.1. Let (ρ0 − ρ∞, u0, θ0 − θ∞) ∈ H2(R3), there exists some small constant ε > 0 such that if

∥(ρ0 − ρ∞, u0, θ0 − θ∞)∥H2(R3) + ∥Φ∥H4(R3) +
4
k=1
∥(1 + |x|)∇kΦ∥L2(R3) ≤ ε, (1.7)

then the initial value problem (1.1) and (1.2) admits a unique solution (ρ, u, θ) globally in time which satisfies

ρ− ρ∗ ∈ C0([0,∞);H2(R3)) ∩ C1([0,∞);H1(R3)),
u, θ − θ∞ ∈ C0([0,∞);H2(R3)) ∩ C1([0,∞);L2(R3)).

Moreover, if the initial data (ρ0−ρ∞, u0, θ0−θ∞) is bounded in Lp(R3) for any given 1 ≤ p ≤ 2, the solution
(ρ, u, θ) enjoys the following decay-in-time estimates:

∥∇(ρ− ρ∗, u, θ − θ∞)∥H1(R3) ≤ C(1 + t)−
3
2 ( 1
p−

1
2 )− 1

2 for all t ≥ 0, (1.8)

∥(ρ− ρ∗, u, θ − θ∞)∥Lq(R3) ≤ C(1 + t)−
3
2 ( 1
p−

1
q ) for all t ≥ 0, 2 ≤ q ≤ 6, (1.9)

∥∂t(ρ− ρ∗, u, θ − θ∞)∥L2(R3) ≤ C(1 + t)−
3
2 ( 1
p−

1
2 )− 1

2 for all t ≥ 0, (1.10)

for some positive constant C.

Remark 1.1. In Theorem 1.1, using the Sobolev imbedding inequalities in Lemma 2.1, (1.7) together with
(1.5) and (1.6) yields

∥ρ∗ − ρ∞∥H4(R3) +
3
k=1
∥(1 + |x|)∇k(ρ∗ − ρ∞)∥L2(R3)∩L3(R3) ≤ Cε. (1.11)
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