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a b s t r a c t

The aim of this paper is to study the existence and multiplicity of weak and classic
solutions for a 2nth-order differential equation involving the p-Laplacian coupled
with periodic boundary conditions. The results are proved by using the minimization
argument and an extended Clark’s theorem. Some particular cases are shown.
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1. Introduction

The aim of this paper is to study a 2nth-order differential equation involving the p-Laplacian, with
periodic boundary conditions. This kind of problems have been widely studied in the literature. For instance,
in [1] it is considered a second order problem, in [2] it is obtained the existence of anti-periodic solutions for
a nth-order problem. Moreover, in [3] it is studied a fourth order problem involving the p-Laplacian with
deviating terms.

In this paper, we generalize the results obtained in [4] for a second order problem.
For p > 1, let us introduce the function ϕp: R→ R, defined by:

ϕp(t) =

t|t|p−2 t ̸= 0,

0 t = 0,
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Let us consider the following problem:
ϕp


u(n)(t)

(n)
+
n−1
i=1

(−1)iai

ϕp


u(n−i)(t)

(n−i)
+ (−1)n (f(t, u(t))− h(t, u(t))) = 0, t ∈ [0, T ]

(1)

coupled with the boundary conditions

u(T )− u(0) = · · · = u(2n−1)(T )− u(2n−1)(0) = 0, (2)

where T ≥ 0 and ai ≥ 0 for i = 1, . . . , n− 1.
We introduce the following Banach space:

Xp =

u ∈Wn,p (0, T ) | u(T )− u(0) = · · · = u(n−1)(T )− u(n−1)(0) = 0


, (3)

where Wn,p (0, T ) is the Sobolev space:

Wn,p (0, T ) =

u ∈ Lp(0, T ) : ∥u∥p =

n
i=0

 T
0

u(i)(t)
p dt1/p

<∞

 .
The function u ∈ Cn([0, T ]) is said to be a classical solution of this problem if ϕp


u(n)(·)


∈ Cn([0, T ])

and it satisfies Eq. (1) for t ∈ (0, T ) and periodic conditions (2).

Remark 1.1. Realize that, from the derivative chain rule, the assumption ϕp

u(n)(·)


∈ Cn([0, T ]) implies

that u(n) ∈ Cn([0, T ]). Moreover, if u(n) is not of constant sign on [0, T ], in order to have ϕp

u(n)(·)


∈

Cn([0, T ]), we should ask for ϕp ∈ Cn(R).

So, in particular, u ∈ C(2n)([0, T ]). However, we need to study the regularity of the p-Laplacian to ensure
that a function which verifies u ∈ C(2n)([0, T ]) also satisfies ϕp


u(n)(·)


∈ Cn([0, T ]).

For instance, let us consider n = 2 and p = 3, for u ∈ C4([0, T ]) we have

(ϕ3 (u′′(t)))′ = ϕ′3 (u′′(t)) u(3)(t) = |u′′(t)| u(3)(t),

hence ϕ3 (u′′(·)) ∈ C1([0, T ]), but ϕ3 (u′′(·)) ̸∈ C2([0, T ]) if u′′ is not of constant sign on [0, T ] even if
u(3) ∈ C1([0, T ]).

The function u ∈ Xp is said to be a weak solution of (1)–(2) if for every v ∈ Xp it is verified the following
equality:  T

0
ϕp


u(n)(t)


v(n)(t) dt+

n−1
i=1
ai

 T
0
ϕ

u(n−i)(t)


v(n−i)(t) dt

+
 T

0
(f(t, u(t))− h(t, u(t))) v(t) dt = 0. (4)

The aim of this paper is to ensure the existence of multiple weak solutions of (1)–(2). That is, we look
for u ∈ Xp such that (4) is verified. Then, we ensure that in some cases the weak solution is also a classical
solution.

Now, we introduce a condition that f and h must satisfy. Let us consider the following functions:

F (t, u) =
 u

0
f(t, s) ds, H(t, u) =

 u
0
h(t, s) ds.
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