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1. Introduction

The aim of this paper is to study a 2nth-order differential equation involving the p-Laplacian, with
periodic boundary conditions. This kind of problems have been widely studied in the literature. For instance,
in [1] it is considered a second order problem, in [2] it is obtained the existence of anti-periodic solutions for
a nth-order problem. Moreover, in [3] it is studied a fourth order problem involving the p-Laplacian with
deviating terms.

In this paper, we generalize the results obtained in [4] for a second order problem.

For p > 1, let us introduce the function ¢,: R — R, defined by:

oo(t) = titlP=2 t#£0,
P 0 t=0,
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Let us consider the following problem:

(60 (w0 0))" + f(—l)iai (o0 (w=90)) "+ (<1 (Fltu®) — bt u®) =0, ¢ 0.7]

coupled with the boundary conditions
u(T) —u(0) = - = u®"(T) — w71 (0) = 0, (2)
where T >0and a; >0fori=1,...,n—1.
We introduce the following Banach space:

X, = {ue W (0,7 [u(T) — u(0) =+ = u™(T) — "D (0) = 0}, 3)

where W™P (0,T) is the Sobolev space:

1/p
W (0,7) = d u e (0, : ull, = (Z/ o ) <o

The function u € C™([0,T]) is said to be a classical solution of this problem if ¢, (u(™(-)) € C™([0,T7])
and it satisfies Eq. (1) for ¢ € (0,7) and periodic conditions (2).

Remark 1.1. Realize that, from the derivative chain rule, the assumption ¢, (u(™(-)) € C™([0,T]) implies
that (™ € C™([0,T]). Moreover, if u(™ is not of constant sign on [0, 77, in order to have ¢, (u(™(-)) €
C™([0,T7]), we should ask for ¢, € C™"(R).

So, in particular, u € C'2 ”)([O, T)). However, we need to study the regularity of the p-Laplacian to ensure
that a function which verifies u € C?™)([0,T7) also satisfies ¢, (u(™(-)) € C™([0,T7).

For instance, let us consider n = 2 and p = 3, for u € C*([0,7]) we have
(s (u"(8))" = ¢ (u" () ™ (8) = [u" ()] u!® (1),

hence o3 (u”(+)) € CH([0,T]), but w3 (u’(:)) ¢ C?([0,T)]) if v’ is not of constant sign on [0,T] even if
u® e ([0, T)).

The function v € X, is said to be a weak solution of (1)—(2) if for every v € X,, it is verified the following
equality:

T .
/0 ©p (u(”)( ) ) (¢ dt—i—Zaz/ w0 (¢t )v("_z)(t)dt

+ / (f(t,u(t)) — h(t,u(t))) v(t)dt = 0. (4)
0

The aim of this paper is to ensure the existence of multiple weak solutions of (1)—(2). That is, we look
for u € X, such that (4) is verified. Then, we ensure that in some cases the weak solution is also a classical
solution.

Now, we introduce a condition that f and h must satisfy. Let us consider the following functions:

F(t,u):/ouf(t,s)ds, H(t,u):/ouh(t,s)ds
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