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Universitat Politècnica de Catalunya, Colom 1, 08222 Terrassa, Spain

a r t i c l e i n f o

Article history:
Received 12 February 2015
Accepted 16 January 2016

Keywords:
Camassa–Holm equation
Integrable vector fields
Singular ordinary differential
equations
Traveling waves

a b s t r a c t

We give an exhaustive characterization of singular weak solutions for ordinary
differential equations of the form ü u + 1

2 u̇
2 + F ′(u) = 0, where F is an analytic

function. Our motivation stems from the fact that in the context of hydrodynamics
several prominent equations are reducible to an equation of this form upon passing
to a moving frame. We construct peaked and cusped waves, fronts with finite-time
decay and compact solitary waves. We prove that one cannot obtain peaked and
compactly supported traveling waves for the same equation. In particular, a peaked
traveling wave cannot have compact support and vice versa. To exemplify the
approach we apply our results to the Camassa–Holm equation and the equation
for surface waves of moderate amplitude, and show how the different types of
singular solutions can be obtained varying the energy level of the corresponding
planar Hamiltonian systems.
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1. Introduction

In the present paper we propose to study certain types of weak solutions for ordinary differential equations
(ODE) of the form

ü u+ 1
2 u̇

2 + F ′(u) = 0, (1)

where F is an analytic function. Our motivation stems from the fact that a variety of model equations arising
in the context of hydrodynamics, among them the well-known Camassa–Holm equation (cf. [1–3]) and the
related equation for surface waves of moderate amplitude (cf. [4–8]), are reducible to an ODE of the form
(1) upon passing to a moving frame. Owing to the fact that every solution of Eq. (1) may be interpreted as
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a traveling wave of a suitable underlying partial differential equation (PDE) we will call the solutions of (1)
traveling waves.

The singular nature of Eq. (1) accounts for the non-uniqueness of certain solutions, which we call singular
solutions. These are in general weak solutions, but have stronger regularity than one would expect a priori:
the solutions are analytic except for a countable number of points at which the equation is satisfied in the
limit. Furthermore, Eq. (1) admits an order reduction which allows us to see that under certain conditions
on F , the solutions are actually classical solutions of this reduced equation.

The main result of this paper consists in the exhaustive characterization of singular solutions of (1)
from qualitative properties of the function F (u). We show that Eq. (1) admits solutions with peaks and
cusps, fronts with finite-time decay and solitary solutions with compact support. Furthermore, we find
that one cannot obtain peaked and compactly supported solutions for the same F . In particular, a peaked
solution cannot have compact support and vice versa. The characterization of classical solutions of (1) will
be covered only very briefly for the convenience of the reader, since our main focus lies in the analysis of
singular solutions.

We apply our results to the aforementioned nonlinear partial differential equations, and show how the
different types of singular solutions are obtained varying the energy levels of the Hamiltonian planar
differential system corresponding to (1). It lies beyond the scope of this paper to prove in full generality that
every weak solution of (1) is also a weak traveling wave solution of an underlying PDE. For a discussion of
this problem we refer the reader to [9,10], where it is shown that in the special case of the Camassa–Holm
equation every weak solution of (1) is a weak traveling wave solution of the underlying PDE. Following
similar steps the same result can be shown for the equation of surface waves of moderate amplitude.

The structure of the paper is as follows. In Section 2, we give the precise definitions of weak and singular
solutions and provide a preliminary result on the non-uniqueness of solutions of (1). In Section 3 we introduce
the notion of elementary forms, classical solutions of (1) defined on a subset of R, from which we construct
singular solutions. Furthermore, we discuss how the qualitative features of any traveling wave solution can
be obtained from the properties of F . The main results of the paper, Propositions 6, 7, 11 and 12 are
presented in Section 4 which is devoted to the complete characterization of singular solutions. In Section 5,
we characterize the classical and singular traveling waves of the Camassa–Holm equation and the equation
for surface waves of moderate amplitude in shallow water.

2. Weak and singular solutions

Our focus lies in the characterization of solutions which are not classical, so we require a weak formulation
of (1). Keeping in mind that any solution of (1) can be interpreted as a traveling wave of an underlying
PDE, we will consider only bounded solutions.

Definition 1. We say that a bounded function u ∈ H1
loc(R) is a traveling wave solution (TWS) if it satisfies

(1) in the sense of distributions, i.e. if u satisfies
R
(u2)tφt + (ut)2φ− 2F ′(u)φdt = 0, (2)

for any test function φ ∈ C∞c (R). We say that u is a strong TWS if it satisfies (1) in the classical sense.

It turns out that the concept of weak solutions is quite crude. Indeed, if no further conditions are imposed
it is possible to find a plethora of weak solutions of (1) giving rise to TWS with very complex shapes. For
instance it is known that the Camassa–Holm equation can have TWS of the form u = ϕ(t) such that some
of its level sets {ϕ(t) = k} are cantor sets, cf. [10]. In the present paper, however, we are interested in
those solutions which fail to be strong TWS because of the singularity, but which still have a certain degree
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