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h i g h l i g h t s

• Obtain the algorithm of normal form for the spatial resonance bifurcation.
• Study the dynamics of the GM model near the codimension-2 bifurcation point.
• Obtain the existence of multiple spatially inhomogeneous equilibria for GM model.
• Obtain the stable spatially inhomogeneous periodic solutions for GM model.
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a b s t r a c t

Gierer–Meinhardt system as a molecularly plausible model has been proposed to
formalize the observation for pattern formation. In this paper, the Gierer–Meinhardt
model without the saturating term is considered. By the linear stability analysis, we
not only give out the conditions ensuring the stability and Turing instability of the
positive equilibrium but also find the parameter values where possible Turing–Hopf
and spatial resonance bifurcation can occur. Then we develop the general algorithm
for the calculations of normal form associated with codimension-2 spatial resonance
bifurcation to better understand the dynamics neighboring of the bifurcating
point. The spatial resonance bifurcation reveals the interaction of two steady state
solutions with different modes. Numerical simulations are employed to illustrate
the theoretical results for both the Turing–Hopf bifurcation and spatial resonance
bifurcation. Some expected solutions including stable spatially inhomogeneous
periodic solutions and coexisting stable spatially steady state solutions evolve from
Turing–Hopf bifurcation and spatial resonance bifurcation respectively.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In developmental biology, the percussive paper by Turing [1] in 1952 brings us about the concept of
Turing instability or diffusion-driven instability. Since then, a variety of phenomena generated by chemical
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kinetics have been translated into the challenging mathematical problems, accompanied by different models
to describe the biological pattern formation [2]. One of the prototype models for investigating pattern
formation in developmental biology is the Gierer–Meinhardt model which has been taken as an example to
explain the mechanism to form patterns: short range activation and long range inhibition [3]. Two kinds of
morphogenesis serve as activator and inhibitor which oppose the action of each other. The so-called G–M
model is: 

∂U(x, t)
∂t

= ρ0ρ+ cρ
U2(x, t)
V (x, t) − θ1U(x, t) + d1

∂2U(x, t)
∂x2 ,

∂V (x, t)
∂t

= c1ρ1U
2(x, t)− θ2V (x, t) + d2

∂2V (x, t)
∂x2 .

(1)

Here U(x, t) and V (x, t) are the concentrations of the activator and inhibitor; d1 and d2 are the diffusion
velocities of the activator and inhibitor respectively; ρ0ρ is the source of activator; θ1 and θ2 are the
degradation coefficients of the activator and inhibitor while cρ and c1ρ1 relate to the productions of both
morphogenesis.

For the Gierer–Meinhardt system with saturation term, there are several literatures on it. The stability
of the stripe solutions and the effect of saturation on the Gierer–Meinhardt model have been analyzed in
a rectangular domain [4]. Chen et al. [5] have obtained a global bifurcation diagram of non-trivial periodic
orbits and steady state solutions. Yang et al. [6] have investigated the stability of the trivial and nontrivial
equilibria and the existence of Hopf and steady state bifurcations of the Gierer–Meinhardt system with
saturation term.

As for system (1), we now briefly summarize the correlative studies. Gierer and Meinhardt focused
on the numerical method and have derived a number of patterns relevant to the formation of biological
structures in [3]. Ruan [7] has considered the diffusion-driven instability of the homogeneous equilibrium
and periodic solution. Some bifurcation analysis and pattern simulations have been carried out by Gonpot
et al. in [8]. Ghergu [9] has established various results of existence, regularity and boundary behaviors
in the Gierer–Meinhardt system subject to Dirichlet boundary condition. Ghergu [10] has proved the
existence of optimal solutions, derived an optimality system, and determined optimal solutions. Zou [11]
has established certain sufficient conditions for global existence with a homogeneous Neumann boundary
condition. The formations of polar, symmetric and periodic structures from the Gierer–Meinhardt model
have been extensively researched: The non-homogeneous steady states of system (1) such as peak and spike
solutions have been explored in [12–14]. The existence and stability of wave-like stationary solution have
been concerned in [15]. For the semi-discrete form of Gierer–Meinhardt system (1), the conditions of Turing
instability have been obtained and different patterns have been shown in [16] and so on.

Liu et al. [17] have considered Hopf bifurcations and steady state bifurcations for the Gierer–Meinhardt
system (1) subject to Dirichlet boundary condition in one-dimension space (0, lπ). In this study, we aim at the
spatially codimension-2 bifurcations including Turing–Hopf bifurcation and spatial resonance bifurcation for
system (1) with Neumann boundary condition. There are several reasons for choosing Neumann boundary
condition. The major one is that the self-organization of patterns is interesting for Neumann boundary
condition implying no external input. Wei et al. [18] have investigated a two-species glycolysis model to
analyze the steady state bifurcations from a double eigenvalue applying Lyapunov–Schmidt technique and
singularity theory. We would also like to mention that the effects of density-dependent nonlinear diffusion
on pattern formation in the biochemical systems have recently been investigated in [19,20]. In this paper we
not only theoretically obtain the existence of the steady state solution with a new mode but also study the
stability of the solution and obtain the bifurcation diagram in the whole parameter plane.

It turns out to be a general principle that the stability of the steady state solution is positively related to
the shape of the steady state. That is to say, the more complicated the shape of the steady state is, the less
stability the steady state has. When two steady state solutions with different resonant modes interact, there
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