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a b s t r a c t

This paper is concerned with the global solvability of three-dimensional models for smart
materials undergoing phase transitions with heat transfer. The problem is formulated
within the framework of generalized standard solids by the coupling of the momentum
equilibrium equation and the flow rule with the heat transfer equation. Under appropri-
ate regularity assumptions on the initial data, a global existence result for this thermody-
namically consistent system is established by using a fixed-point argument combinedwith
energy estimates.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Shape-memory materials belong to the general class of so-called smart materials. These materials severely deformed
have the ability to recover their original shape after a thermal cycle (shape-memory effect). Their use in innovative and
commercially valuable applications has motivated several studies on their physical properties during the last decade (see
for instance [1–3] and the references therein).We consider in this work some three-dimensional models for smartmaterials
undergoing phase transitions. In the framework of generalized standard solids due to Halphen and Nguyen (see [4]), the
unknowns are the displacement field u, an internal variable z and the temperature θ and the problem is described by the
coupling of the heat equation with the momentum equilibrium equation combined with a constitutive law (flow rule) for
the evolution of the internal variable.

More precisely let us denote byW (e(u), z,∇z, θ) theHelmholtz free energy, depending on the infinitesimal strain tensor
e(u) def=

1
2 (∇u+ ∇uT) for the displacement u, where (·)T denotes the transpose of the tensor, the internal variable z and the

temperature θ [5,4]. For simplicity, we will omit any dependence on the material point x ∈ Ω and t ∈ [0, T ] with T > 0.
We assume thatW can be decomposed as follows

W (e(u), z,∇z, θ) def= W1(e(u), z,∇z)− W0(θ)+ θW2(e(u), z). (1.1)

This partially linearized decomposition ensures that the entropy separates the thermal andmechanical variables (see (2.8)).
Moreover the last term θW2(e(u), z) allows for coupling effects between the temperature and the internal variable, which
is motivated by some phenomenological models for shapememory alloys presented in Section 2.Wemake the assumptions
of small deformations. The problem is thus described by the following system

− div(σel + Le(u̇)) = ℓ, σel
def
= De(u)W (e(u), z,∇z, θ), (1.2a)
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∂Ψ (ż)+ Mż + σin ∋ 0, σin
def
= DzW (e(u), z,∇z, θ)− div D∇zW (e(u), z,∇z, θ), (1.2b)

c(θ)θ̇ − div(κ(e(u), z, θ)∇θ) = Le(u̇) : e(u̇)+ θ∂tW2(e(u), z)+ Ψ (ż)+ Mż : ż. (1.2c)

HereΨ is a dissipation potential. As it is common inmodeling hysteresis effect inmechanics, we assume thatΨ is positively
homogeneous of degree 1, i.e., Ψ (γ z) = γΨ (z) for all γ ≥ 0. The viscosity tensors are denoted by L and M, c(θ) is the heat
capacity and κ(e(u), z, θ) is the conductivity. As usual, (˙), Di

z and ∂ denote the time derivative ∂
∂t , the i-th derivative with

respect to z and the subdifferential in the sense of convex analysis [6,7], respectively. Observe that (1.2a)–(1.2c) are usually
called the momentum equilibrium equation, the flow rule and the heat-transfer equation, respectively.

The paper is organized as follows. In Section 2, we justify the thermodynamic consistency of this model and we describe
it more completely. Then the mathematical formulation of the problem in terms of displacement, internal variables and
temperature is introduced in Section 3, as well as a reformulation of the heat equation in terms of enthalpy. Sections 4–6
are devoted to the proof of a local existence result by a fixed point argument. More precisely, in Section 4 existence and
uniqueness results for the system composed of the momentum equation and the flow rule for a given temperature are
recalled and some regularity results for the solutions (u, z) are established. Section 5 is dedicated to recall existence and
regularity results for the enthalpy equation for any given right hand side. Therefore a local existence result follows in
Section 6 by using a fixed-point argument. Finally a global energy estimate is established in Section 7 leading to a global
existence result for the system (1.2).

2. Mechanical model

We justify here the thermodynamic consistency of the model (1.2). Starting from the Helmholtz free energy W , we
introduce the specific entropy s via Gibb’s relation

s def
= −DθW (e(u), z,∇z, θ), (2.1)

and the internal energy

Win(e(u), z,∇z, θ) def= W (e(u), z,∇z, θ)+ θs. (2.2)

Then the entropy equation is given by

θ ṡ + div(j) = ξ, (2.3)

where j is the heat flux and ξ is the dissipation rate. We get

ξ = Le(u̇) : e(u̇)+ Mż : ż + Ψ (ż) ≥ 0,

and, assuming Fourier’s law for the temperature, we have

j = −κ(e(u), z, θ)∇θ.

Wecan check now that the second lawof thermodynamics is satisfied if θ > 0. Indeed, assuming that the system is thermally
isolated, we may divide (2.3) by θ and Green’s formula yields

Ω

ṡ dx =


Ω

div(κ(e(u), z, θ)∇θ)
θ

dx +


Ω

Le(u̇) : e(u̇)+ Mż : ż + Ψ (ż)
θ

dx

=


Ω

κ(e(u), z, θ)∇θ · ∇θ

θ2
dx +


Ω

Le(u̇) : e(u̇)+ Mż : ż + Ψ (ż)
θ

dx ≥ 0.

We differentiate nowWin(e(u), z,∇z, θ)with respect to time, and we obtain by using the chain rule and (2.1) that

Ẇin(e(u), z,∇z, θ) = De(u)W (e(u), z,∇z, θ) : e(u̇)+ DzW (e(u), z,∇z, θ) : ż

+D∇zW (e(u), z,∇z, θ) · ∇ ż + θ ṡ. (2.4)

We integrate (2.4) overΩ , thus we use Green’s formula and (2.3), and we find
Ω

Ẇin(e(u), z,∇z, θ) dx =


Ω

De(u)W (e(u), z,∇z, θ) : e(u̇) dx

+


Ω

DzW (e(u), z,∇z, θ) : ż dx +


Ω

D∇zW (e(u), z,∇z, θ) · ∇ ż dx

+


Ω

(div(κ(e(u), z, θ)∇θ)+ Le(u̇) : e(u̇)+ Mż : ż + Ψ (ż)) dx. (2.5)

On the one hand, we multiply (1.2a) by u̇, and we integrate this expression overΩ to get
Ω

De(u)W (e(u), z,∇z, θ) : e(u̇) dx +


Ω

Le(u̇) : e(u̇) dx =


Ω

ℓ · u̇ dx. (2.6)
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