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a b s t r a c t

The flow of an incompressible Newtonian fluid in a periodic porousmedium is studied. The
equations governing this motion form a free boundary problem involving a potential flow
problem and the evolution of a free surface. The flow is driven by gravitational forces and
it is stabilized by an external source. The existence of a unique classical solution for large
initial data is proved in the sense that there is an unbounded set of initial conditions for
which a unique classical solution exists.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction and main results

We study the laminar flow of an incompressible Newtonian fluid in a homogeneous isotropic porous medium under
the influence of gravity. We consider a periodic geometry, i.e., the free surface of the fluid is assumed to be the graph of a
function over the n-torus Tn

:= Rn/2πZn and we identify these functions with 2π-periodic functions. Given f̃ ∈ C2(Tn),
we define the free surface as

Γ (f̃ ) := {(x, f̃ (x)) : x ∈ Tn
}.

The fluid covers the domain

Ω(f̃ ) := {(x, y) ∈ Tn
× R : 0 < y < f̃ (x)}

having the fixed bottom partΓ0 := Tn
×{0} ≡ Tn. For the flowwe assume a Darcy law to hold, i.e., the velocity of the fluid is

given by −K∇n+1u, where K is a material constant and u is a velocity potential. If we assume the fluid to be incompressible
we get −divn+1K∇n+1u = 0, i.e.,∆n+1u = 0. We normalize the air pressure at the free surface to be zero and are then able
to write down the velocity potential at the free surface as u = f̃ . At Γ0 we model an external source b̃ being a real analytic
function from R to R; see [1,2] for similar models. Adding a transport equation for the free surface with initial condition f̃0,
we obtain the free boundary problem

∆n+1u = 0 inΩ(f̃ ),
(1 − δ)u + δ∂n+1u = b̃(f̃ ) on Γ0,

u = f̃ on Γ (f̃ ),
∂t f̃ = −


1 + |∇nf |2∂νu on Γ (f̃ ),

f̃ (0) = f̃0 on Tn,

(1)

where ν := N/∥N∥ is the unit outward normal at Γ (f̃ ) with N := (−∇nf , 1). The parameter δ ∈ {0, 1} is fixed from the
very beginning. It determines whether a Dirichlet (δ = 0) or a Neumann (δ = 1) boundary condition is considered. In case
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δ = 0 the pressure is prescribed at the lower boundary component whereas in case δ = 1 a rate of injection/suction is given
by b̃. Note that the above model can also be considered as a one-phase Hele-Shaw model in a strip-like geometry.

Free boundary problems of this (or similar) kind have attracted much attention during recent years. Dating back to
the works of Kawarada and Koshigoe [3] as well as Escher and Simonett [4] the abstract theory of these free boundary
problems has continuously become more diverse. Whereas in the articles mentioned above the fluid is—like in our model—
of Newtonian type, also non-Newtonian fluids have been studied in more recent years, see, e.g., [5,2]. As in our work a
periodic geometry is considered there, cf. also [6]. In contrast, in [3,4] the geometry is unbounded.

Appropriate techniques to solve these free boundary problems are methods from the theory of analytic semigroups and
abstract parabolic equations. The original problem is reduced to an abstract Cauchy problem in appropriate function spaces
for the free surface only. Then the linearization of the corresponding evolution operator is studied. If it can be shown that,
given some initial condition, it generates an analytic semigroup on the respective function space the short time existence of
a unique classical solution can be deduced from maximal regularity arguments.

The existing well-posedness results for periodic free surface flows of the above (or similar) type are usually local results
in the sense that it is not known how ‘‘large’’ the set of initial conditions is for which the corresponding Cauchy problem is
parabolic. This is the case, e.g., if the existence of classical solutions is studied only near some trivial solution for which it is
quite accessible to establish such a generation result. Then perturbation arguments can be applied to extend this generation
result to a neighborhood of that trivial solution. We aim to improve these existing local generation results by explicitly
describing an in someway large set of initial conditions such that the corresponding evolution operator generates an analytic
semigroup.

To begin with we introduce the basic function spaces in which we formulate our results. Given s > 0, the little Hölder
space over the n-torus hs(Tn) is defined as the closure of the smooth functions C∞(Tn) in the space C s(Tn) of (Hölder)
continuous functions with norm ∥ · ∥s. An equivalent intrinsic definition of these spaces shows that they are true subspaces

of the spaces C s(Tn). Moreover, these spaces are densely injected, i.e., ht(Tn)
d
↩→ hs(Tn) for t > s. Since this relation does

not hold for the spaces C s(Tn), s > 0, we work in little Hölder spaces.
Let Ady := {f ∈ C2(Tn): minx∈Tn f (x) > y} and, given s > 0, define hs

+
(Tn) := hs(Tn) ∩ Ad0. Note that hs

+
(Tn) is the

cone of strictly positive elements in hs(Tn). Furthermore, let us drop the n-torus from our notation and define hs
:= hs(Tn)

and hs
+

:= hs
+
(Tn) for s > 0. Finally, for s > 0,m ∈ N, and an open and bounded subset X ⊂ Rm with a C2 boundary the

space bucs(X) is defined as the closure of the bounded and uniformly continuous functions of arbitrary order BUC∞(X) in
the space of bounded and uniformly (Hölder) continuous functions of degree s on X denoted by BUC s(X)with norm ∥ · ∥s,X .
Observe the analogy of this definition to the definition of the spaces hs, s > 0.

We call a pair (f̃ , u) a classical Hölder solution of problem (1) if there is T > 0 such that

f̃ ∈ C([0, T ), h2+α
+
) ∩ C1([0, T ), h1+α),

u( · , t) ∈ buc2+α(Ω(f̃ (t, · ))), 0 ≤ t ≤ T ,

and f̃ , u fulfill (1) pointwise. Given f̃ ∈ h2+α
+ , put

κf̃ :=
f̃ 2

(1 + f̃ 2 + |∇n f̃ |2)(1 + |∇n f̃ |2)

and let uf̃ be the solution of

∆n+1u = 0 inΩ(f̃ ),
(1 − δ)u + δ∂n+1u = b̃(f̃ ) on Γ0,

u = f̃ on Γ (f̃ ).
(2)

Finally, defining the set

W := {f̃ ∈ h2+α
+

: ∂n+1uf̃ (x, f̃ (x)) < κf̃ (x), x ∈ Tn
}, (3)

we can formulate our main result.

Theorem 1. Given c > 0, suppose that (−1)δ b̃(c) > (−1)δc1+δ/(1 + c2). For every f̃0 ∈ W there exists T > 0 and a unique
maximal classical Hölder solution (f̃ , u) of system (1) on [0, T ).

2. The transformation

In this section we transform system (1) on a fixed reference domain where we perform its further analysis. This
transformation introduces nonlinear terms in the differential operators in the following way. Let α ∈ (0, 1) and c > 0
be fixed in the following and let f̃ ∈ h2+α

+ be given. Put

φ̃f̃ (x, y) := (x, 1 − y/f̃ (x)), (x, y) ∈ Ω(f̃ ).
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