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a b s t r a c t

We prove that the flowmap associated to a model equation for surface waves of moderate
amplitude in shallow water is not uniformly continuous in the Sobolev space Hs with
s > 3/2. The main idea is to consider two suitable sequences of smooth initial data
whose difference converges to zero in Hs, but such that neither of them is convergent. Our
main theorem shows that the exact solutions corresponding to these sequences of data
are uniformly bounded in Hs on a uniform existence interval, but the difference of the two
solution sequences is bounded away from zero in Hs at any positive time in this interval.
The result is obtained by approximating the solutions corresponding to these initial data
by explicit formulae and by estimating the approximation error in suitable Sobolev norms.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction and the main result

We consider a model equation for surface waves of moderate amplitude in shallow water

ut + ux + 6uux − 6u2ux + 12u3ux + uxxx − uxxt + 14uuxxx + 28uxuxx = 0, (1)

which arises as an approximation of the Euler equations in the context of homogeneous, inviscid gravity water waves.
In recent years, several nonlinear models have been proposed in order to understand some important aspects of water
waves, like wave breaking or solitary waves. One of the most prominent examples is the Camassa–Holm (CH) equation [1],
which is an integrable, infinite-dimensional Hamiltonian system [2–4]. The relevance of the CH equation as a model for
the propagation of shallow water waves was discussed by Johnson [5], where it is shown that it describes the horizontal
component of the velocity field at a certain depth within the fluid; see also [6]. Building upon the ideas presented in [5],
Constantin and Lannes [7] have recently derived the evolution equation (1) as a model for the motion of the free surface
of the wave, and they evince that (1) approximates the governing equations to the same order as the CH equation. Besides
deriving (1), the authors of [7] also establish the local well-posedness results for the Cauchy problem associated to (1).
Relying on a semigroup approach due to Kato [8], Duruk [9] has shown that this feature holds for a larger class of initial data,
as well as for solutions which are spatially periodic [10]. The well-posedness in the context of Besov spaces together with
the regularity and the persistence properties of strong solutions are studied in [11].
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Similarly to the CH equation, cf. [12,13], the model equation (1) can also capture the phenomenon of wave breaking: for
certain initial data the solution remains bounded, but its slope becomes unbounded in finite time cf. [7,10]. Unlike for the CH
equation,which is known to possess global solutions, cf. [12,14], it is not apparent how to control the solutions of (1) globally,
due to the fact that this equation involves higher order nonlinearities in u and its derivatives than the CH equation. On the
other hand, if one passes to a moving frame, it can be shown that there exist solitary traveling wave solutions decaying at
infinity [15]. Their orbital stability has been recently studied in [16] using an approach proposed by Grillakis, Shatah and
Strauss [17], which takes advantage of the Hamiltonian structure of (1).

In the present paper, we consider the Cauchy problem associated to (1) in the setting of periodic functions. From the local
well-posedness results [9,10], we know that its solutions depend continuously on their corresponding initial data in Sobolev
spaces Hs with s > 3/2. Our main result states that this dependence is not uniformly continuous. This property was only
recently shown to hold true for the CH equation [18,19], and was subsequently confirmed also for the Euler equations [20]
and for several related hyperbolic problems such as theµ−b equation [21], the hyperelastic rod equation [22], for amodified
CH system [23], and for the modified CH equation [24]. The main difficulty we encounter compared to all these references
is that, as mentioned before, our equation has a higher degree of nonlinearity. Nevertheless, we were able two find two
sequences of smooth initial data whose difference converges to zero in Hs, but such that none of them is convergent, with
the corresponding solutions of (1) being uniformly bounded on a common (nonempty) interval of existence. Approximating
these solutions by explicit formulae, we then successively estimate the error in suitable Sobolev norms and use well-known
interpolation properties of the Sobolev spaces and commutator estimates to show that at any time of the common existence
interval the difference of the two sequences of exact solutions is bounded from below in theHs-norm by a positive constant.
More precisely, denoting by u(·; u0), the unique solution of (1) corresponding to the initial data u0 ∈ Hs(S) with s > 3/2,
cf. Theorem 2.1, our main result states:

Theorem 1.1 (Non-uniform Continuity of the Flow Map). For s > 3/2, the flow map

u0 → u(·; u0) : Hs(S) → C([0, T ),Hs(S)) ∩ C1([0, T ),Hs−1(S))

associated to the evolution equation (1) is continuous, but it is not uniformly continuous. More precisely, there exist two sequences
of solutions

(un)n, (un)n ⊂ C([0, Tu],Hs(S)) ∩ C1([0, Tu],Hs−1(S)),

where Tu > 0, and a positive constant C > 0 with the following properties:

sup
n∈N

max
[0,Tu]

∥un(t)∥Hs + ∥un(t)∥Hs ≤ C,

lim
n→∞

∥un(0) −un(0)∥Hs = 0,

but

lim inf
n→∞

∥un(t) −un(t)∥Hs ≥ C−1
| sin(t)| for t ∈ (0, Tu].

The structure of the paper is as follows: In Theorem 2.1 we recall some properties concerning the well-posedness of (1)
from [10] and determine a lower bound on the existence time of the solution inHs in terms of the initial data. Then, we intro-
duce two sequences of approximate solutions (uω,n)n, ω ∈ {−1, 1}, and compute the approximation error in Lemma 3.1. The
corresponding solutions uω,n of (1) determined by the initial data uω,n(0) are then shown to be uniformly bounded on a com-
mon interval of existence, the absolute error ∥uω,n

− uω,n∥ being computed in different Sobolev norms, cf. Lemmas 4.1–4.3.
We end the paper with the proof of the main result.
Notation. Throughout this paper, we shall denote by C positive constants which may depend only upon s. Furthermore,
Hr

:= Hr(S), with r ∈ R, is the L2-based Sobolev space on the circle S := R/Z. Given r ∈ R, we let Λr
:= (1 − ∂2

x )
r/2

denote the Fourier multiplier with symbol ((1 + |k|2)r/2)k∈Z. It is well-known that Λr
: Hq(S) → Hq−r(S) is an isometric

isomorphism for all q, r ∈ R. Furthermore, the Banach space Wm
∞

:= Wm
∞

(S), m ∈ N, consisting of all bounded functions
which possess bounded weak derivatives of order less than or equal to n, is endowed with the usual norm.
Some useful estimates. The following commutator estimates play a crucial role in our analysis:

∥[Λr , f ]g∥L2 ≤ Cr

∥fx∥L∞∥Λr−1g∥L2 + ∥Λr f ∥L2∥g∥L∞


for all r > 3/2, (2)

∥[Λσ ∂x, f ]g∥L2 ≤ C∥f ∥Hs∥g∥Hσ for s > 3/2 and 1 + σ ∈ [0, s]. (3)

They hold for all functions f , g ∈ C∞(S) and for the commutator [S, T ] := ST − TS. The Calderon–Coifman–Meyer estimate
(3) follows from Proposition 4.2 in Taylor [25]. The estimate (2) is due to Kato and Ponce [26,27]. Additionally, we shall use
the following multiplier inequality

∥fg∥Ht ≤ C∥f ∥Ht ∥g∥Hr for t ≤ r, r > 1/2 (4)

and f ∈ H t(S), g ∈ Hr(S), cf. e.g. [28].
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