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|z
MSC: where V is bounded and close-to-periodic potential and —ﬁ is a Hardy-type
ggg‘;g potential. We assume that V is positive and f has the subcritical growth but
35790 not higher than |u|9~2u. If u is positive and small enough we find a ground state
35R11 solution, i.e. a critical point of the energy being minimizer on the Nehari manifold. If
58E05 1 is negative we show that there is no ground state solutions. We are also interested
in an asymptotic behaviour of solutions as u — 0% and K — 0.
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1. Introduction

We consider the following nonlinear, fractional Schrédinger equation with external, Hardy-type potential

(=) %y + <V(x) - |’“|La) u= f(x,u) — K(z)ul' *uon RN \ {0} (1.1)
x

where a € (0,2), p € R and N > a, with u € H*/2(RY). The fractional Schrédinger equation arises in

many models from mathematical physics, e.g. nonlinear optics, quantum mechanics, nuclear physics (see

e.g. [16,30,33,39,40,46,52,56,58,59] and references therein). We focus on the external potential of the form

Vix)— %, where V' € L>®(R") is close-to-periodic potential and —# is Hardy-type potential. Note that
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the Hardy-type potential does not belong to the Kato’s class, hence it is not a lower order perturbation of
the operator —A + V (z) (see [45]).

The fractional Laplacian can be defined via Fourier multiplier |£|%, i.e. the operator (—A)*/2, for a
function ¢ : RN — R, is given by the Fourier transform by the formula

F((—2)226) (&) = g (),

where

FUQ = () = [ e ua)do
RN
denotes the usual Fourier transform. When 1 : RY — R is rapidly decaying smooth function, it can be
defined by the principal value of the singular integral
Y(x) —¥(y)

(=A)%(x) = en .o P.V. N v,

(1.2)
RN |z —y

where

2o (M)

S S B )
N = 5 NI (—a)2)|

Here, I" denotes the Gamma function, i.e. a function defined for complex numbers z with Re(z) > 0 by the

formula
oo
I'(z) ::/ z* e dx
0

and extended to a meromorphic function on the set C\ {0,—1,—2,...}. Both definitions of the fractional
Laplacian are equivalent, i.e. on L?(R™) they give operators with common domain and they coincide on
this domain (see [35]). Tt is known that (—A)®/2 reduces to —A as a — 2~ (see [17]). In this paper we
identify (—A)®/? with the classical Laplace operator —A for a = 2. In what follows we will use the following
characterization of the fractional Sobolev space, for 0 < @ < 2:

2

@)= fue 2@y - luw) ~ul)” w(e) P < 50
H (RN)-—{ GL(RN)'//RNXM ~ia ddy—i—/RNl()|d < }

[z -yl
with the associated scalar product:

u(z) — u(y))(v(x) - v(y))
g e dxdy+/RN u(x)v(x)dr € R.

a/2mN a/2(mN w. v (
H2(RNY < HO2(RY) 5 (u, )+—>//RNX]RN

See e.g. [10,17] for more background about the fractional Laplace operator and fractional Sobolev spaces.
Eq. (1.1) describes the behaviour of the so-called standing wave solutions ®(z,t) = u(z)e ™! of the
following time-dependent fractional Schrédinger equation

90

o = (—A)*/2p + (V(x) — ﬁ +w) & — g(z,|P|).

Such an equation was introduced by Laskin by expanding the Feynman path integral from the Brownian-like
to the Lévy-like quantum mechanical paths (see [36,37]). The time-dependent equation is also intensively
studied (see e.g. [28,38]).
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