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a b s t r a c t

In this paper, we study a doubly nonlinear parabolic equation, called the p-Sobolev
flow here, which is the classical Yamabe flow on a bounded domain in Euclidean
space in the case p = 2. We show the existence of a weak solution to the p-Sobolev
flow without geometric assumptions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω ⊂ Rn (n ≥ 3) be a bounded domain with smooth boundary ∂Ω and let T > 0 be arbitrarily given
and fixed. Then we consider the following doubly nonlinear parabolic initial–boundary problem (1.1):⎧⎪⎨⎪⎩

∂t(|u|q−1
u) = div

(
|∇u|p−2∇u

)
in Ω × (0, T )

u = 0 on ∂Ω × (0, T )
u(0) = u0 in Ω ,

(1.1)

where 2 ≤ p < n, q := np
n−p − 1, and u = (ui) = (ui(x, t)), i = 1, . . . , k, is a vector valued function, defined

for (x, t) ∈ Ω × [0, T ] with values into Rk. We call (1.1) as p-Laplace flow and Yamabe flow, respectively if
p > 2 and p = 2, and collectively refer (1.1) as p-Sobolev flow. Our main purpose is to prove the following
Theorem 1.1 related to the existence of a weak solution to (1.1).

Theorem 1.1. Assume that the u0 ∈ W 1,p
0 (Ω) ∩ L∞(Ω). Then, for any T > 0 there exists a weak solution

to (1.1).

The Yamabe flow is originally introduced by Hamilton in his study of the so-called Yamabe problem, the
existence of a conformal metric of constant curvature on n(≥ 3)-dimensional closed Riemannian manifolds [5].
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Let (M, g0) be a n(≥ 3)-dimensional smooth, closed Riemannian manifold with scalar curvature R0 = Rg0 .
The Yamabe flow is given by the heat flow equation

ut = (s − R)u = u− 4
n−2 (cn∆g0u − R0u) + su, (∗)

where u = u(t), t ≥ 0 is a positive function on M such that g(t) = u(t)
4

n−2 g0 is a conformal change of a
Riemannian metric g0, with volume Vol(M) =

∫
M

dvolg =
∫

M
u

2n
n−2 dvolg0 = 1, having total curvature

s :=
∫

M

(cn|∇u|2g0
+ R0u2) dvolg0 =

∫
M

R dvol, cn := 4(n − 1)
n − 2 .

Hamilton [5] proved some convergence of the Yamabe flow as t → ∞ in some geometric conditions. Under
the assumption that (M, g0) is positive scalar curvature and locally conformal flat, Ye [7] showed the global
existence of the Yamabe flow and its convergence as t → ∞ to a metric of constant scalar curvature.
Schwetlick–Struwe [6] succeeded in obtaining the asymptotic convergence of the Yamabe flow in the case
3 ≤ n ≤ 5, under an appropriate condition of Y (M, g0) for an initial positive scalar curvature. On the
other hand, in a simpler geometrical case when (M, g0) is a bounded domain (Ω , gRn) in Rn, the Yamabe
flow is our p-Sobolev flow (1.1) with p = 2, but the curvature conditions above are not verified. In this
paper, we prove the existence of a weak solution of (1.1). Here we shall recall the fundamental result due
to Alt-Luckhaus [1], who addressed the following initial–boundary problem for a monotone vector field b(u)
and continuous functions a(u, b(u)), f(b(u)) with polynomial growth conditions:⎧⎨⎩∂tb(u) = div (a(u, b(u))) + f(b(u)) in Ω × (0, T )

u = uD in ∂Ω × (0, T )
u(0) = u0 in Ω ,

(1.2)

where, b(u) (u ∈ Rk) is monotone if (b(v) − b(w)) · (v − w) ≥ 0 holds for any v, w ∈ Rk. For (1.1),
b(u) := |u|q−1

u (q > 1), which is actually monotone (Lemma A.1). In [1] replaced the time derivative term
in (1.2) by the backward difference quotient on time (1.2) is reduced into elliptic problem, which can be
solved by Galerkin’s produce and Minty’s monotone trick. This basic procedure is also used in this paper.

2. Preliminaries

For a vector-valued function v : Ω → Rk, we use some function spaces. For each p, 1 ≤ p < ∞, let Lp(Ω)
denote the Banach spaces of vector-valued measurable functions v : Ω → Rk that are pth integrable on Ω ,
with the norm

∥v∥Lp(Ω) :=
(∫

Ω

|v(x)|p dx

)1/p

and for p = ∞, L∞(Ω) is the Banach space of essentially bounded vector-valued function with the norm

∥v∥L∞(Ω) := ess sup
x∈Ω

|v(x)|.

For 1 ≤ p < ∞, the Sobolev space W 1,p(Ω) is the Banach space of vector-valued functions that are weakly
differentiable and their weak derivatives are pth integrable on Ω , with the norm

∥v∥W 1,p(Ω) :=
(∫

Ω

|v|p + |∇v|p dx

)1/p

,

where ∇v = (∇v1, . . . , ∇vk) denotes the gradient of v = (v1, . . . , vk) in a distribution sense, and let W 1,p
0 (Ω)

be the closure of C∞
0 (Ω) with respect to the norm ∥ · ∥W 1,p . For 1 ≤ p, q ≤ ∞, Lq(0, T ; Lp(Ω)) is a function
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