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a b s t r a c t

We give the explicit formulas for the Green function and the Martin kernel for all
integer and fractional powers of the Laplacian s > 1 in balls. As consequences, we
deduce interior and boundary regularity estimates for solutions to linear problems
and positivity preserving properties. Our proofs rely on a characterization of suitable
s-harmonic functions and on a differential recurrence equation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we show that the Green function Gs and the Martin kernel Ms for any power s > 1 of the
Laplacian (−∆)s in the unit ball B ⊂ RN , N ∈ N, are given by

Gs(x, y) := kN,s|x− y|2s−N
∫ ρ(x,y)

0

vs−1

(v + 1) N
2
dv for x, y ∈ RN , x ̸= y, (1.1)

where

ρ(x, y) := (1 − |x|2)+(1 − |y|2)+

|x− y|2
, kN,s :=

Γ ( N
2 )

π
N
2 4sΓ (s)2

(1.2)
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and

Ms(x, θ) = lim
B∋y→θ

Gs(x, y)
(1 − |y|2)s

= kN,s

s

(1 − |x|2)s
+

|θ − x|N
for x ∈ RN , θ ∈ ∂B. (1.3)

For m ∈ N0, σ ∈ (0, 1), and s = m+σ, the operator (−∆)s can be defined pointwisely via finite differences
(see [4, equation (1)]), namely, for u ∈ C2s+α(U) ∩ L∞(RN ),

(−∆)su(x) := cN,s

2

∫
RN

δm+1u(x, y)
|y|N+2s

dy, x ∈ RN ,

where δm+1u(x, y) :=
m+1∑

k=−m−1
(−1)k

(
2(m+ 1)
m+ 1 − k

)
u(x+ ky) for x, y ∈ RN

(1.4)

is a finite difference of order 2(m + 1), and cN,s is a positive normalization constant (for the precise
value, see [4, equation (2)]) such that the Fourier symbol of (−∆)s is |ξ|2s (see [22, Lemma 25.3]
or [4, Theorem 1.8]); moreover, if u ∈ C2s+α(U) ∩ L∞(RN ) then (−∆)su(x) = (−∆)m(−∆)σu(x) for
every x ∈ U (see [4, Corollary 1]), but in general the fractional Laplacian (−∆)σ cannot be interchanged
freely with the Laplacian (−∆), this would require extra regularity assumptions on u, particularly across
the boundary ∂U (see [4]), but for u ∈ C∞

c (RN ) we have

(−∆)su = (−∆)σ(−∆)mu = (−∆)m(−∆)σu in RN .

For the relevance and applications of the higher-order fractional Laplacian we refer to [3,21].
Our main result regarding the Green function is the following.

Theorem 1.1. Let s > 0, N ∈ N, f ∈ Cα(B) for some α ∈ (0, 1), and

u : RN → R be given by u(x) :=
∫

B

Gs(x, y) f(y) dy. (1.5)

Then u ∈ C2s+α(B) ∩ Cs
0(B) is the unique pointwise solution (in H s

0 (B)) of

(−∆)su = f in B, u ≡ 0 on RN \B, (1.6)

and there is C > 0 such that

∥ dist(·, ∂B)−su∥L∞(B) < C∥f∥L∞(B). (1.7)

Theorem 1.1 was known for s ∈ N [7] and for s ∈ (0, 1) [5,8]. While preparing the last version of this work
we learned about a preprint of [10], where the authors show independently the validity of Boggio’s formula
for all s ∈ (1,∞)\N considering only smooth functions with compact support as right-hand sides. Our proofs
are very different, the approach in [10] relies on covariance under Möbius transformations and computations
using Hypergeometric functions, whereas our proofs are based on an induction argument detailed below.

The function Gs is known as Boggio’s formula, see [7,8,10,14]. Since Gs is a positive function, Theorem 1.1
shows that problems on balls enjoy a positivity preserving property. This is not the case for general domains,
see [3]. Our proof of Theorem 1.1 is based on a differential recurrence formula for Gs in terms of Gs−1 and
an explicit function Ps−1 which is (s−1)-harmonic in the ball, see Lemma 3.1. Since the validity of Boggio’s
formula is known for s ∈ (0, 1] (in view, for example, of the direct computations in [8]), this allows us
to implement an induction argument to extend this result to all s > 1. We remark that our approach
also provides an alternative proof for s ∈ N. Two key elements in the proof are an elementary pointwise
calculation of −∆xGs(x, y) for y ̸= x and s > 1 (see Lemma 3.1) and the introduction of higher-order Martin
kernels (1.3), which we use to characterize a large class of s-harmonic functions, see Theorem 1.2. Martin
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