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a b s t r a c t

Let Ω be a bounded domain in R2 with smooth boundary, we study the following
anisotropic elliptic problem{

−∇
(

a(x)∇υ
)

= a(x)
[
eυ − sϕ1 − h(x)

]
in Ω ,

υ = 0 on ∂Ω ,

where a(x) is a positive smooth function, h ∈ C0,α(Ω), s > 0 is a large parameter
and ϕ1 is a positive first eigenfunction of the problem −∇

(
a(x)∇ϕ

)
= λa(x)ϕ under

Dirichlet boundary condition in Ω . We construct solutions of this problem which
exhibit multiple concentration behavior around maximum points of a(x)ϕ1 in the
domain as s → +∞.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω be a bounded domain in R2 with smooth boundary. This paper deals with the analysis of solutions
of the boundary value problem{

− ∇
(
a(x)∇υ

)
= a(x)

[
eυ − sϕ1 − h(x)

]
in Ω ,

υ = 0 on ∂Ω ,
(1.1)

where s > 0 is a large parameter, h ∈ C0,α(Ω) is given, a(x) is a smooth function over Ω and satisfies

a1 ≤ a(x) ≤ a2 (1.2)

for some constants 0 < a1 < a2 < +∞, ϕ1 > 0 is an eigenfunction of − 1
a(x) ∇

(
a(x)∇·

)
with Dirichlet

boundary condition corresponding to the first eigenvalue λ1. Obviously, if we denote ρ(x) ∈ H1
0 (Ω) as a
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unique solution of {
− ∇

(
a(x)∇ρ

)
= a(x)h(x) in Ω ,

ρ = 0 on ∂Ω ,

then Eq. (1.1) is equivalent to solving for u = υ + s
λ1
ϕ1 + ρ, the problem{

− ∇
(
a(x)∇u

)
= a(x)k(x)e−tϕ1eu in Ω ,

u = 0 on ∂Ω ,
(1.3)

where k(x) = e−ρ(x) and t = s/λ1.
Eq. (1.1) was motivated by the study of the following elliptic problem of Ambrosetti–Prodi type [1]:{

− ∆υ = eυ − sϕ1 − h(x) in Ω ,

υ = 0 on ∂Ω ,
(1.4)

where Ω ⊂ RN is a bounded smooth domain, h ∈ C0,α(Ω), s > 0 is a large parameter and ϕ1 > 0 is
an eigenfunction of −∆ with Dirichlet boundary condition corresponding to the first eigenvalue λ1. In the
early 1980s Lazer and McKenna conjectured that (1.4) has an unbounded number of solutions as s → +∞
(see [15]). If we set ρ(x) = (−∆)−1h in H1

0 (Ω), then (1.4) is equivalent to solving for u = υ + s
λ1
ϕ1 + ρ, the

problem {
− ∆u = k(x)e−tϕ1eu in Ω ,

u = 0 on ∂Ω ,
(1.5)

where k(x) = e−ρ(x) and t = s/λ1. When N = 2, del Pino and Muñoz [12] gave a positive answer to the
Lazer–McKenna conjecture for problem (1.4) by constructing non-simple bubbling solutions of (1.5) with
the following asymptotic behaviors

k(x)e−tϕ1eut ⇀ 8π
l∑

i=1
miδξi

and ut =
l∑

i=1
miGD(x, ξi) + o(1),

where mi > 1, ξi’s are maxima of ϕ1 and GD(x, ξ) denotes the Green’s function of the problem{
− ∆xGD(x, ξ) = 8πδξ(x), x ∈ Ω ,

GD(x, ξ) = 0, x ∈ ∂Ω .

It is quite surprising that this multiple bubbling phenomenon is in strong opposition to a slightly modified
version of Eq. (1.5), namely the Liouville-type equation{

− ∆u = ε2k(x)eu in Ω ,

u = 0 on ∂Ω ,
(1.6)

where ε > 0 is a small parameter, Ω ⊂ R2 is a bounded smooth domain and k(x) ∈ C2(Ω) is a nonnegative,
not identically zero function. Indeed, it is well known in [4,18,19,23] that if uε is a family of solutions
of Eq. (1.6) satisfying

lim
ε→0

uε


L∞(Ω) = +∞ and lim

ε→0
ε2
∫
Ω

k(x)euεdx = C < +∞

then up to subsequences, C = 8πl, l ∈ N∗ and uε makes l distinct points simple blow up on S = {ξ1, . . . , ξl} ⊂
Ω such that

ε2k(x)euε ⇀ 8π
l∑

i=1
δξi

and uε =
l∑

i=1
GD(x, ξi) + o(1).
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