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a b s t r a c t

This paper is concerned with the time-asymptotic nonlinear stability of rarefaction
waves to the Cauchy problem of the one-dimensional compressible Navier–Stokes
equations with zero heat conductivity. Under the assumption that the unique
global entropy solution to the resulting Riemann problem of the corresponding
compressible Euler equations consists of rarefaction waves only, then if both the
initial perturbation and the strengths of rarefaction waves are assumed to be
suitably small, we show that its Cauchy problem admits a unique global solution
which tends time-asymptotically toward the rarefaction waves. This result is proved
by using the elementary energy method and the argument developed by Kawashima
and Okada (1982).

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Consider the one-dimensional compressible Navier–Stokes equations in the Lagrangian coordinates

vt − ux = 0,
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where the unknowns v > 0, u, θ > 0, p > 0, e, and s represent the specific volume, the velocity, the absolute
temperature, the pressure, the internal energy, and the entropy of the gas, respectively. The coefficients of
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viscosity and heat-conductivity, µ and κ, are positive constants or identically zero. We assume, as usual in
thermodynamics, that by using any given two of the five thermodynamical variables, v, θ, p, e, and s, the
remaining three variables are their functions.

The second law of thermodynamics asserts that

θds = de+ pdv.

From which, if we choose (v, θ), (v, s), or (v, e) as independent variables and write (p, e, s) = (p(v, θ), e(v, θ),
s(v, θ)), or (p, e, θ) = (p̃(v, s), ẽ(v, s), θ̃(v, s)), or (p, s, θ) = (p̂(v, e), ŝ(v, e), θ̂(v, e)) respectively, then we can
deduce that

sv(v, θ) = pθ(v, θ),
sθ(v, θ) = eθ(v, θ)

θ
, (1.2)

ev(v, θ) = θpθ(v, θ) − p(v, θ),
ẽv(v, s) = −p(v, θ),
ẽs(v, s) = θ,

p̃v(v, s) = pv(v, θ) − θ(pθ(v, θ))2

eθ(v, θ) , (1.3)

p̃s(v, s) = θpθ(v, θ)
eθ(v, θ) ,

θ̃v(v, s) = −θpθ(v, θ)
eθ(v, θ) ,

θ̃s(v, s) = θ

eθ(v, θ) ,

or

ŝe(v, e) = 1
θ
,

ŝv(v, e) = p(v, θ)
θ

,

p̂e(v, e) = pθ(v, θ)
eθ(v, θ) , (1.4)

p̂v(v, e) =
(
pv(v, θ) − θ(pθ(v, θ))2

eθ(v, θ)

)
+ p(v, θ)pθ(v, θ)

eθ(v, θ) ,

θ̂e(v, e) = 1
eθ(v, θ) ,

θ̂v(v, e) = p(v, θ) − θpθ(v, θ)
eθ(v, θ) .

Throughout this paper, the pressure function p(v, θ) and the internal energy e(v, θ) are assumed to satisfy

(H1) pv(v, θ) = ∂p(v, θ)
∂v

< 0, eθ(v, θ) = ∂e(v, θ)
∂θ

> 0

and

(H2) p̃vv(v, s) = ∂2p̃(v, s)
∂v2 > 0 and p̃(v, s) is convex with respect to(v, s).

From (1.3)2 and (H1), we have

p̃v(v, s) = pv(v, θ) − θ(pθ(v, θ))2

eθ(v, θ) < 0, (1.5)

ẽss(v, s) = θ

eθ(v, θ) > 0,

ẽvs(v, s) = −θpθ(v, θ)
eθ(v, θ) , (1.6)

ẽvv(v, s) = −pv(v, θ) + θ(pθ(v, θ))2

eθ(v, θ) > 0,
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