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a b s t r a c t

In the present paper we establish the existence of weak solutions to the initial–
boundary value problem for one viscoelastic model of Oldroyd’s type fluid with
memory along trajectories of the velocity field. Previously such problem has been
studied for corresponding regularized models. The reason of the regularization was
the lack of results on the solvability of the Cauchy problem with not sufficiently
smooth velocity field. However, recent results about regular Lagrangian flows
(generalization of classical solutions of a Cauchy problem) allow to establish the
existence theorem for the original problem. We use topological approximation
method which involves the approximation of the original problem by regularized
operator equations with consequent application of topological degree theory for its
solvability. This allows to establish the existence of weak solutions of considered
problem on the base of a priori estimates and passing to the limit.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the motion of a fluid that occupies a bounded domain Ω ⊂ Rn, n = 2, 3, with locally Lipschitz
boundary ∂Ω on a time interval [0, T ], T > 0. The motion equation in the Cauchy form (see [11], Ch. II,
Sec. 4–6) is

ρ(∂v(t, x)/∂t+
n∑

i=1
vi(t, x) ∂v(t, x)/∂xi) =

− ∇ p(t, x) + Div σ(t, x) + ρf(t, x), (t, x) ∈ Q = [0, T ] × Ω , (1.1)

where v = (v1(t, x), . . . , vn(t, x)) is the velocity at a point x ∈ Ω at time t; ρ is the fluid density; p = p(t, x)
is the pressure; σ = σ(t, x) = {σij(t, x)}n

i,j=1 is the deviator of the stress tensor; f = f(t, x) is the density

* Corresponding author.
E-mail addresses: zvg vsu@mail.ru (V.G. Zvyagin), orlov vp@mail.ru (V.P. Orlov).

https://doi.org/10.1016/j.na.2018.02.012
0362-546X/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.na.2018.02.012
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2018.02.012&domain=pdf
mailto:zvg_vsu@mail.ru
mailto:orlov_vp@mail.ru
https://doi.org/10.1016/j.na.2018.02.012


74 V.G. Zvyagin, V.P. Orlov / Nonlinear Analysis 172 (2018) 73–98

of external forces; Div σ is a vector function whose coordinates are divergences of the rows of the matrix σ.
Below ρ supposed to be equal to 1 for simplicity.

Eq. (1.1) is completed by a constitutive law (rheological relation) defining the type of a fluid (see [16]).
The constitutive law σ = 2νE(v) defines the Newtonian fluid. Here E(v) ={Eij}n

i,j=1, Eij = 1
2 (∂vi/∂xj +

∂vj/∂xi) is the strain rate tensor. The well known Navier–Stokes system corresponds to this law. However,
there is a wide range of viscous incompressible non-Newtonian fluids (see e.g. [1,4,5,12,15,22,23,25,26]),
among them are Maxwell, Kelvin–Voigt, Oldroyd and other models. One of the important non-Newtonian
fluid is determined by the rheological relation

(1 + λ d/dt)σ = 2ν(1 + κν−1d/dt)E(v) (1.2)

where d/dt = ∂/∂t+
∑n

i=1vi∂/∂xi is the total derivative and λ,κ, ν are positive constants.
Fluids of (1.2) type have been introduced and extensively studied by Jeffreys and Oldroyd (see e.g. [12,15]).

Integrating (1.2) along the velocity field v, solving it with respect to σ and substituting the result in Eq. (1.1)
we get the following Jeffreys–Oldroyd initial–boundary value problem

∂v(t, x)/∂t+
n∑

i=1
vi(t, x)∂v(t, x)/∂xi − µ0∆v(t, x) − (1.3)

µ1Div
∫ t

0
exp((s− t)/λ) E(v)(s, z(s; t, x))ds+∇p(t, x) = f(t, x), (t, x) ∈ Q;

div v(t, x) = 0, (t, x) ∈ Q; (1.4)

z(τ ; t, x) = x+
∫ τ

t

v(s, z(s; t, x)) ds, 0 ⩽ t, τ ⩽ T, x ∈ Ω ; (1.5)

v(0, x) = v0(x), x ∈ Ω ; v(t, x) = 0, (t, x) ∈ Γ = [0, T ] × ∂Ω . (1.6)

Here µ0 = 2κ, µ1 =2(ν − κ) are constitutive constants. Details can be found in [26], Sec. 7.1.
Survey of results on mathematical problems for Jeffreys–Oldroyd models is given in [22]. The integral

term in (1.3) is related to the memory of the fluid along trajectories of the velocity field v. Note, that the
system (1.3)–(1.6) contains not only unknown velocity v and pressure p, but also the trajectory z(τ ; t, x)
being defined by the Cauchy problem (in the integral form) (1.5).

Different models with memory have been studied in many papers (see. e.g. [1,4,5,10,13,14,16,22–26] et al.).
Weak solvability of problem (1.3)–(1.6) where v in (1.5) is replaced by its smooth regularization ṽ have been
considered in [23]. The reason of the regularization is the impossibility to define a unique classical solution
to the Cauchy problem (1.5) for v from the class of weak solutions of problem (1.3)–(1.6). Relatively recent
results on a solvability of Cauchy problem (1.5) for “low” regular v in the class of regular Lagrangian flows
(generalization of the concept of a classical solution) allow to establish existence, uniqueness and stability
of solutions to problem (1.5) in mentioned class (see e.g. [2,6–8]). This allows to get the existence of weak
solutions to the problem (1.3)–(1.6) without a regularization of v in Eq. (1.5). For this purpose results
of [2,6–8,23] have been substantially used.

The paper is organized as follows. Section 2 provides basic notations, auxiliary statements and the
statement of the main result. In Section 3 we introduce a family of two-parameterized regularized problems
for (1.3)–(1.6). In Section 4 we prove the solvability of regularized problems. For this we reformulate these
problems in the form of operator equations (Section 4.1) and use the topological degree theory for the
solvability of these equations (Section 4.3). The solvability of regularized problems (1.3)–(1.6) is established
in Section 4.4. In Section 5 we obtain estimates of solutions of regularized problems. Section 6 is devoted to
the proof of the main Theorem 2.3. For this we construct a family of approximative regularized problems
(Section 6.1) and on the base of results of Sections 4 and 5 we establish the solvability of approximative
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