

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

The second expansion of the unique vanishing at infinity solution to a singular elliptic equation

Haitao Wan^{a,b,*}, Yongxiu Shi^a

- ^a School of Mathematics and Information Science, Shandong Institute of Business and Technology, Yantai, 264005, Shandong, PR China
- ^b School of Mathematics and Information Science, Weifang University, Weifang, 261061, Shandong, PR China

ARTICLE INFO

Article history: Received 16 July 2017 Accepted 12 February 2018 Communicated by Enzo Mitidieri

MSC: 35B40 35J75 35J67

35J60

Keywords: Singular elliptic equations The second expansion Vanishing at infinity solutions

ABSTRACT

This paper is considered with the second expansion of the unique vanishing at infinity solution to $-\Delta u = b(x)g(u), x \in \mathbb{R}^N(N \geq 3)$, where $b \in \mathrm{C}(\mathbb{R}^N)$ is nonnegative and may be supercritical attenuation or critical attenuation at infinity, $g \in \mathrm{C}^1((0,\infty),(0,\infty))$ is non-increasing on $(0,\infty)$ with $\lim_{s \to 0^+} g(s) = \infty$ and g is normalized regularly varying at zero with index $-\gamma$ $(\gamma > 1)$.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In this article, we are interested in the second expansion of the unique vanishing at infinity solution to the following singular elliptic equation

$$-\Delta u = b(x)g(u), \tag{1.1}$$

where $x \in \mathbb{R}^N (N \geq 3)$, and a vanishing at infinity solution of Eq. (1.1) means that $u \in C^2(\mathbb{R}^N)$ solves Eq. (1.1) and $\lim_{|x| \to \infty} u(x) = 0$. The nonlinearity g satisfies

 $(\mathbf{g_1})$ $g \in C^1((0,\infty),(0,\infty))$ is non-increasing on $(0,\infty)$ and $\lim_{s\to 0^+} g(s) = \infty$;

* Corresponding author.

E-mail addresses: wanhaitao200805@163.com (H. Wan), syxiu0926@126.com (Y. Shi).

 $^{^{\}mbox{\tiny $\frac{1}{2}$}}$ This work is supported by Shandong Provincial Natural Science Foundation ZR2016AL03, China.

 $(\mathbf{g_2})$ there exist $\gamma > 1$ and a function $f \in C^1(0, a_1) \cap C[0, a_1)$ for $a_1 > 0$ small enough such that

$$\frac{-sg'(s)}{g(s)} := \gamma + f(s) \text{ with } \lim_{s \to 0^+} f(s) = 0,$$

i.e.,

$$g(s) = c_0 s^{-\gamma} \exp\left(\int_s^{a_1} \frac{f(\tau)}{\tau} d\tau\right), c_0 = g(a_1) a_1^{\gamma},$$

where f satisfies one of the following conditions between

- $(\mathbf{S_1})$ $f \equiv 0 \text{ on } (0, a_1];$
- $(\mathbf{S_2})$ $f(s) \neq 0, \forall s \in (0, a] \text{ for some } a \leq a_1.$

Moreover, if (S_2) holds in (g_2) , then we assume that

(g₃) there exists $\theta \geq 0$ such that

$$\lim_{s \to 0^+} \frac{sf'(s)}{f(s)} = \theta \ge 0.$$

If $\theta = 0$ in $(\mathbf{g_3})$, then we further assume that

 $(\mathbf{g_4})$ there exist $\beta > 0$ and $\sigma \in \mathbb{R}$ such that

$$\lim_{s \to 0^+} (-\ln s)^{\beta} f(s) = \sigma.$$

The weight b satisfies

- (b₁) $b \in C(\mathbb{R}^N)$ is nonnegative in \mathbb{R}^N ;
- (**b**₂) there exist $k \in \mathcal{K}$, $\lambda \geq 2$ and $B_0 \in \mathbb{R}$ such that

$$b(x) = |x|^{-\lambda} k(|x|) (1 + B_0 |x|^{-1} + o(|x|^{-1})),$$

where K denotes the set of Karamata functions k defined on $[s_0, \infty)$ by

$$k(s) := c \exp\left(\int_{s_0}^s \frac{y(\tau)}{\tau} d\tau\right), \ s \ge s_0 > 0$$

with c > 0 and $y \in C[s_0, \infty)$ such that $\lim_{s \to \infty} y(s) = 0$.

Eq. (1.1) arises in the study of boundary layer phenomena for viscous fluids, non-Newtonian fluids, chemical heterogeneous catalysts, as well as in the theory of heat conduction in electrical materials, and has been discussed extensively by many authors in different contexts.

If Ω is a bounded domain with C^2 -boundary and $b \equiv 1$ in Ω , g satisfies $(\mathbf{g_1})$, then Fulks and Maybee [20], Stuart [44], Crandall, Rabinowitz and Tartar [13] proved that Eq. (1.1) possesses a unique vanishing at boundary solution $u \in C^{2,\alpha}(\Omega) \cap C(\bar{\Omega})$. In particular, the authors in [13] investigated the first estimate of the unique solution. If $f(u) = u^{-\gamma}$ with $\gamma > 0$, $b \in C^{\alpha}(\bar{\Omega})$, b(x) > 0 for all $x \in \bar{\Omega}$, then Lazer and McKenna [32] showed that Eq. (1.1) possesses a unique vanishing at boundary solution $u \in C^{2,\alpha}(\Omega) \cap C(\bar{\Omega})$ and $u \in H_0^1(\Omega)$ if and only if $\gamma < 3$. If g satisfies $(\mathbf{g_1})$ and the conditions

- ($\mathbf{g_{01}}$) there exist positive constants c_0 , η and $\gamma \in (0,1)$ such that $g(s) \leq c_0 s^{-\gamma}$, for all $s \in (0,\eta_0)$;
- $(\mathbf{g_{02}})$ there exist constants $\theta > 0$ and $\eta_1 \ge 1$ such that $g(\xi s) \ge \xi^{-\theta} g(s)$ for all $\xi \in (0,1)$ and $t \in (0,\xi\eta_1)$;
- (g₀₃) the mapping $\xi \in (0, \infty) \to T(\xi) = \lim_{s \to 0^+} \frac{g(\xi s)}{\xi g(s)}$ is a continuous function,

Download English Version:

https://daneshyari.com/en/article/7222639

Download Persian Version:

https://daneshyari.com/article/7222639

<u>Daneshyari.com</u>