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a b s t r a c t

The Keller–Segel system{
ut = D∆u − Dχ∇ ·

(
u

v
∇v

)
, x ∈ Ω , t > 0,

vt = D∆v − v + u, x ∈ Ω , t > 0,

is considered in a bounded domain Ω ⊂ Rn, n ≥ 2, with smooth boundary, where
χ > 0 and D > 0. The main results identify a condition on the parameters χ <

√
2
n

and D > 0, essentially reducing to the assumption that χ2

D
be suitably small, under

which for all reasonably regular and positive initial data the corresponding classical
solution of an associated Neumann initial–boundary value problem, known to exist
globally according to previous findings, approaches the homogeneous steady state
(u0, u0) at an exponential rate with respect to the norm in (L∞(Ω))2 as t → ∞,
where u0 := 1

|Ω|

∫
Ω

u(·, 0). As a particular consequence, this entails a convergence
statement of the above flavor in the normalized system with D = 1 and fixed
χ <

√
2
n

, provided that Ω satisfies a certain smallness condition.
© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Among the rich variety of Keller–Segel-type models discussed in the literature, the problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ut = ∆U − χ∇ ·
(U

V
∇V

)
, y ∈ Ω1, t > 0,

Vt = ∆V − V + U, y ∈ Ω1, t > 0,

∂U

∂ν
= ∂V

∂ν
= 0, y ∈ ∂Ω1, t > 0,

U(y, 0) = U0(y), V (y, 0) = V0(y), y ∈ Ω1,

(1.1)

with χ > 0 and given nonnegative functions U0 and V0 appears to be of particular interest. This on the one
hand reflects that in refinement of the classical minimal Keller–Segel system [19] in which the evolution of the
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cell density U is governed by Ut = ∆U −∇·(U∇S(V )) with linear S, the choice of the logarithmic sensitivity
S(V ) = χ ln V in (1.1) with regard to the chemical signal concentration V is well-adapted to situations in
which the chemotactic response of cells respects the long-familiar Weber–Fechner law of stimulus perception
([27,20]). On the other hand, this modification goes along with significant mathematical challenges which
are inter alia due to an apparent loss of a treasured gradient structure that has been underlying essential
bodies of the analysis in the case of linear sensitivities (see e.g. [26,16,8,33] and also the survey [2]).

As a consequence, it seems yet widely unknown to which extent the decay of the derivative S′(V ) = χ
V at

large signal densities may suppress phenomena of blow-up which constitute the probably most characteristic
qualitative feature of original Keller–Segel models with S′ ≡ const. in two- or higher-dimensional spatial
domains [15,33]. After all, partial results indicate a substantial dampening effect at least for small values of
the factor χ in (1.1), asserting global existence of bounded classical solutions for widely arbitrary positive
initial data, and thus ruling out explosions, when Ω is a bounded domain in Rn, n ≥ 2, and χ < χ0(n) with
some χ0(n) > 0 which is currently known to satisfy χ0(2) > 1.015 and χ0(n) ≥

√
2
n for n ≥ 3 [21,3,32,10];

cf. also [35,24]. For larger values of χ, nontrivial global solutions have been constructed only in generalized
frameworks so far, thus yet allowing solutions to become unbounded even within finite time, but at least
excluding any collapse into persistent Dirac-type singularities. For instance, if χ <

√
n+2

3n−4 then (1.1) is
solvable already within quite a natural weak solution concept [32], while under the weaker assumption that
χ <

√
n

n−2 , in radially symmetric settings global solutions are known to exist in a slightly more generalized
framework [29]. Only recently, within a yet weaker solution concept this assumption could be further relaxed
in the sense that merely requiring

χ <

⎧⎪⎪⎨⎪⎪⎩
∞ if n = 2,√

8 if n = 3,
n

n − 2 if n ≥ 4,

(1.2)

is sufficient to allow for corresponding global solvability, even without any symmetry assumption [22]. We
remark that for parabolic–elliptic simplifications of (1.1) in which the second equation therein is replaced
with 0 = ∆V − V + U , somewhat more comprehensive results are available, but beyond this furthermore
providing inter alia providing some examples of exploding solutions when n ≥ 3 and χ > 2n

n−2 [25], extending
the range of χ in (1.2) for generalized solvability when n = 3 [4], and especially in the two-dimensional case
asserting global classical solvability regardless of the size of χ [12]; a result of the latter flavor could recently
even be carried over to the radial version of the fully parabolic variant of (1.1) with its second equation
becoming τVt = ∆V − V + U for suitably small τ > 0 [13].

Beyond these fundamental results on global solvability, however, only little seems known about solutions
to (1.1); in particular, their qualitative behavior seems widely unaddressed in the literature, with available
exceptions concentrating on the associated steady state problem. Indeed, a large variety of highly nontrivial
equilibria have been detected since the seminal work [23] in this direction [6,1,7,5], but their role, as actually
the role of any stationary solution, in the dynamics of the parabolic problem (1.1) seems unclear up to now.

Main results. The intention of this paper is to accept the challenge of describing the large time behavior
in systems of the form (1.1) despite lacking knowledge on any meaningful global gradient flow structure
therein. In order to achieve nontrivial progress in this direction going beyond straightforward perturbation
arguments leading no further than to local stability and attractivity results, unlike the very few precedent
energy-independent cases of large-time analysis in chemotaxis problems which exclusively seem to rely on
the availability of comparison arguments (see e.g. [28,36,30,34]), we shall pursue a strategy heuristically
motivated by the trivial observation that both the numerator and the denominator in the quotient U

V in
(1.1) grow linearly with respect to U and V , respectively. Therefore, namely, naively assuming that up to
parabolic smoothing V will become conveniently large wherever U attains large values and vice versa, our



Download English Version:

https://daneshyari.com/en/article/7222646

Download Persian Version:

https://daneshyari.com/article/7222646

Daneshyari.com

https://daneshyari.com/en/article/7222646
https://daneshyari.com/article/7222646
https://daneshyari.com

