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a b s t r a c t

We propose a finite dimensional setup for the study of lightlike geodesics starting
orthogonally to a spacelike (n − 2)-submanifold and arriving orthogonally to the
time-slices of an (n − 1)-dimensional timelike submanifold of a n-dimensional
spacetime. Under a transversality and a nonfocality assumption, we prove a finite
dimensional reduction of a general relativistic Fermat principle, and we give a
formula for the Morse index. We present some applications to bifurcation theory,
and we conclude the paper with the discussion of some examples that illustrate our
results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In a general relativistic spacetime, light rays from an extended light source to an extended receiver
(a screen) are modeled by lightlike geodesics that are orthogonal at their endpoints to two given spacelike
submanifolds. Considering the worldline Γ of a receiver, and assuming that this set is a stably causal
Lorentzian hypersurface of the spacetime, i.e., a hypersurface that admits a (smooth) time function as a
Lorentzian manifold of its own, then the light rays starting orthogonally to the initial submanifold and
terminating orthogonally to the time slices of Γ are characterized by Fermat’s principle as stationary points
of the arrival time functional, see Ref. [17].

This variational principle lacks regularity, in that the set of trial paths on which the arrival time is to
be considered, which consists of all (future pointing, piecewise smooth) lightlike curves between the source
and the receiver, does not admit a differentiable structure. This is an obstruction to the application of
analytical techniques, such as Lusternik–Schnirelman theory, Morse theory, or bifurcation theory, whose
setup requires a quite elaborate functional framework, and it makes unfeasible the use of singularity theory.
In this paper we propose a finite dimensional (smooth) reduction of the Fermat principle, which is suited
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to give a local description of the orthogonal light rays near a degenerate one, and that in particular allows
a direct application of bifurcation theory and singularity theory to study the caustics. This aims naturally
at establishing multiplicity results for light rays between sources and observers, which model the so-called
multiple image effect and the gravitational lensing phenomenon in General Relativity. The interested reader
will find a very extensive literature on the subject, see for instance Ref. [13], or the living review [16]
for a detailed account of the recent bibliography. Fermat’s principle in general relativistic optics, and its
applications to gravitational lensing are discussed thoroughly in the monograph [15]. Important aspects of
the theory of gravitational lensing are presented in the survey [18]. Of course, a finite dimensional approach
to light rays can be obtained using the normal exponential map. However, an essential point of the finite
dimensional reduction which is presented here is the fact that it preserves the variational structure of the
problem, and therefore is also suited for developing Morse theoretical techniques, or to assess stability results.

Our model proposes to study orthogonal light rays using the arrival time functional restricted to the
finite dimensional manifold of lightlike geodesics issuing orthogonally to the initial spacelike manifold P0
(the extended light source), and arriving transversally onto a timelike hypersurface Γ (the worldline of
an extended receiver). The arrival time of lightlike geodesics in Lorentzian geometry plays the same role
that the (squared) distance function plays in the study of focal properties of submanifolds in Riemannian
geometry. Generically, the focal set is the bifurcation or catastrophe set for the family of distance functions
from ambient points, see [21,22]. We assume that, with the induced metric, Γ is a stably causal Lorentzian
manifold in itself, i.e., it admits a smooth time function T : Γ → R; for τ ∈ R, Γτ will denote the time slice
T −1(τ). In this situation, the arrival time is a smooth function in the space of light rays issuing from P0
and arriving on Γ , and under a nonfocality assumption (Section 2.3), its critical points correspond to light
rays that arrive orthogonally to the time slices of Γ (Theorem 3.1). Moreover, a second order variational
principle also holds, in the following sense. First, nondegenerate critical points p of the arrival time functional
correspond exactly to nondegenerate orthogonal light rays ℓp. Second, the Morse index of the critical point p

is equal to the Morse index of the geodesic action functional at ℓp minus the focal index of ℓp. Such difference
can be easily interpreted geometrically: it is the so-called concavity index that appears in the Morse index
theorem for orthogonal geodesics (see Theorem 2.1), and it is given in terms of the second fundamental form
of the target manifold, computed in a space associated to the P0-Jacobi fields. Our Morse index theorem
provides a physical interpretation of the concavity index form along an orthogonal lightlike geodesic, which
is now seen as the second variation of the arrival time functional.

As to the nonfocality assumption needed for our theory, a simple counterexample shows that it cannot
be omitted, see Example 1. A discussion on this assumption is presented in Section 3.2, where we show
that focal points correspond indeed to focusing points of families of lightlike geodesics issuing orthogonally
from P0. We will also show here that the nonfocality assumption can be replaced by the assumption that τ ,
defined in (3.1), has only nondegenerate critical points, see Corollary 3.4.

Also, using the variational principle introduced in this paper, we give a notion of stability for light
rays between an extended light source and an extended receiver. By the Morse index theorem, stability is
equivalent to the positive-definiteness of the concavity index form (Corollary 4.8). In the case of lightlike
geodesics between a pointwise source and a pointwise observer, the Morse index is always given by the
number of conjugate instants along the ray, which happens to be independent on the orientation of the
geodesic, i.e., a future-pointing is stable if and only if its backwards past-point reparameterization is stable.
One of the interesting consequences of our theory is the fact that, when one considers extended source
and receiver, the Morse index and the notion of stability do indeed depend on the time orientation of the
lightlike geodesic. Thus, an observer may have different notions of stability for the image of an extended
source on an extended receiver depending on whether he/she is located at the source or at the target. This is
discussed in Section 4.3, where a formula relating the Morse indices of lightlike geodesics and its backwards
reparameterization is given (Proposition 4.6). Explicit examples of situations of orthogonal lightlike geodesics
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