Existence and regularity of nonlinear advection problems

A. Aghajani ${ }^{\text {a }}$, C. Cowan ${ }^{\text {b }}$, S.H. Lui ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran
${ }^{\mathrm{b}}$ Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

A R T I C L E I N F O

Article history:

Received 3 June 2017
Accepted 7 October 2017
Communicated by Enzo Mitidieri

Keywords:

Elliptic PDEs
Dead core
Positive solutions

Abstract

This paper examines the existence and regularity of classical positive solutions of $-\Delta u=|\nabla u|^{p}$ on a bounded domain in \mathbb{R}^{N} with $0<p<1$. This appears to be the first paper to discuss dead core solutions for a PDE with a nonlinear advection term. We also give a Liouville-type result for supersolutions on an exterior domain, asymptotics of solutions as $p \nearrow 1$ and $p \searrow 0$, as well as various extensions of the PDE.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this article we examine the existence and regularity of positive solutions of the following

$$
\left\{\begin{align*}
-\Delta u & =|\nabla u|^{p} \quad \text { in } \Omega, \tag{1}\\
u & =0 \quad \text { on } \partial \Omega
\end{align*}\right.
$$

where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary and $p>0$. We also consider some variations on (1).

Our motivation for studying this problem comes from the well-studied Lane-Emden equation given by

$$
\left\{\begin{align*}
-\Delta u=u^{p} \quad & \text { in } \Omega, \tag{2}\\
u=0 \quad & \text { on } \partial \Omega,
\end{align*}\right.
$$

where $p>1$. This equation (and variations of) have played a central role in the development of the calculus of variations, bifurcation theory, the role of the critical Sobolev exponent, and Pohazaev identity, see for instance $[14,28,32,45,48]$. In the case of p supercritical the existence versus nonexistence of solutions of (2) on non star shaped domains becomes a very nontrivial issue, see for instance [20,24,44]. For versions of (2) on exterior domains see [21-23].

[^0]Consider the variation of (2) given by $\Delta u=u^{p}$ in the case of $0<p<1$. In this case there exist dead core solutions; i.e., solutions which (in this case) are zero on a closed set with nonempty interior, see [47].

We now return to (1). The first point is that it is a non variational equation and hence various standard tools are not available anymore. Some relevant monographs for this work include [29,33,39]. We now point out a basic feature of (1). In the case of $p \geq 1$ there is no non-zero classical solution of (1) since we can re-write the equation as $-\Delta u-b(x) \cdot \nabla u(x)=0$, where $b(x)=|\nabla u|^{p-2} \nabla u$. Hence we can apply the maximum principle, provided $b(x)$ is sufficiently regular, to see that $u=0$. So with this in mind we restrict our attention to classical solutions of (1) in the case of $0<p<1$. One can also examine suitably singular solutions of (1) in the range of $\frac{N}{N-1}<p<2$ and $p>2$, see Example 1 and forthcoming paper [1].

We recall some background regarding (1). Many people have studied boundary blow up solutions of the variation of (2) given by $\Delta u=u^{p}$ (and generalizations of). Similarly people have studied boundary blow up versions of (1) where one removes the minus sign in front of the Laplacian; see for instance [40,49]. See $[6-13,19,25,26,30,31,34,35,41-43,46]$ for more results on equations similar to (1). Needless to say, this list is incomplete. We remark that several papers consider a much more general PDE than (1). Those papers tend to discuss existence of solutions which is not an issue in (1) since the trivial solution is always a solution. This paper appears to be the first to discuss dead core solutions to PDEs with a nonlinear advection term.

We now give a brief summary of the results in papers listed above. [6] studied positive weak solutions of $-\Delta u=B|\nabla u|^{2} / u+f$ for positive B and non-negative f. It was shown that positive solutions exist iff $B<1$. [7] considers non-negative weak solutions of $-\Delta u+|\nabla u|^{2} u^{-\gamma}=f>0$, where γ is a positive constant. The main result is that such solution exists iff $\gamma<2$. [8] and [9] consider $-\Delta u=d(x) u+\mu(x)|\nabla u|^{2}+h(x)$ and its generalization $-L u=H(x, u, \nabla u)+h(x)$, where L is a second-order linear elliptic operator and H grows at most quadratically in $|\nabla u|$ and satisfies other appropriate conditions. [10] demonstrates existence of weak solutions of $A u+g(x, u, \nabla u)=h(x)$, where A is a quasi-linear elliptic operator, the nonlinearity g satisfies a growth condition in $|\nabla u|$ and a sign condition.

In the series of papers [11-13], they consider $-\Delta_{q} u+|\nabla u|^{p}=0$ and its generalizations. Here $-\Delta_{q}$ is the q-Laplacian and $q-1<p<q$. A detailed study of the singularities of non-negative solutions is given. [12] gives a classification of isolated singularities of negative solutions of this PDE, which is a generalization of (positive solutions of) (1) for the case $1<p<2$. The paper [19] gives existence and a classification of singular non-negative solutions of $\Delta u=u^{q}|\nabla u|^{m}$ on $\mathbb{R}^{N} \backslash 0$, where $q \geq 0$ and $m \in(0,2)$.
$[25,26]$ derived existence and a uniform L^{∞} estimate of weak solutions of $-\Delta_{p}=|\nabla u|^{p}+g-\operatorname{divf}$ and its generalization - div $a(x, u, \nabla u)=H(x, u, \nabla u)+g-\operatorname{divf}$. Here $p>1, a$ satisfies certain coercive and growth conditions and H grows no faster than $|\nabla u|^{p}$ and satisfies a sign condition. Both f and g must be sufficiently small.
$[30,31]$ prove existence of weak solutions of $-\Delta u=|\nabla u|^{2}|u|^{-\theta}+f(x)$ and generalizations. Here $\theta \in(0,1)$ and $f \in L^{m}$ may not have a constant sign. $[34,35]$ prove a priori estimates and existence of a solution for a general class of nonlinear elliptic problems - div $a(x, u, \nabla u)=H(x, u, \nabla u)$, where H satisfies a growth condition. In particular, it treats the case $H=|\nabla u|^{p}$ for $p>1$.
[41] is a classical paper which considers $-\Delta u+H(x, \nabla u)+\alpha u=0$, where H satisfies a growth and sign condition and $\alpha \geq 0$. As opposed to other papers in our list, existence theory for both Dirichlet and Neumann boundary conditions is given.
$[42,43]$ study non-negative solutions of $-\Delta u+H(x, u, \nabla u)=0$ for some H including the special cases $|\nabla u|^{p}, u^{p}|\nabla u|^{q}$ and $u^{p}+|\nabla u|^{q}$, where p and q are suitably restricted constants. In particular, when $H=|\nabla u|^{p}$, assume $p \in(1,2)$. Finally, [46] contains results for $-\Delta_{p} u=g(u)|\nabla u|^{p}+f(x)$, where $p>1$, $f \in L^{m}$ and g satisfies a growth condition. It is shown that a weak solution exists, and is bounded or unbounded according to whether $m>N / p$ or $m<N / p$.

We begin by looking at an example.

https://daneshyari.com/en/article/7222716

Download Persian Version:

https://daneshyari.com/article/7222716

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: aghajani@iust.ac.ir (A. Aghajani), craig.cowan@umanitoba.ca (C. Cowan), shaun.lui@umanitoba.ca (S.H. Lui).

