Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Weighted vector-valued estimates for a non-standard Calderón–Zygmund operator

Guoen Hu

Department of Applied Mathematics, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, PR China

ARTICLE INFO

Article history: Received 21 July 2017 Accepted 27 September 2017 Communicated by Enzo Mitidieri

MSC: 42B20

 $\label{eq:Keywords:} \begin{array}{l} \mbox{Singular integral operator} \\ \mbox{Weighted vector-valued bound} \\ \mbox{A_p constant} \\ \mbox{Maximal operator} \\ \mbox{Sparse operator} \end{array}$

ABSTRACT

In this paper, the author considers the weighted vector-valued estimates for the operator defined by

$$T_A f(x) = p. v. \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} \left(A(x) - A(y) - \nabla A(y) \right) f(y) dy$$

and the associated maximal singular integral operator T_A^* , where Ω is homogeneous of degree zero, has vanishing moment of order one, A is a function in \mathbb{R}^n such that $\nabla A \in \text{BMO}(\mathbb{R}^n)$. By pointwise estimates for $||\{T_A f_k(x)\}||_{l^q}$ and $||\{T_A^* f_k(x)\}||_{l^q}$, the author obtains some quantitative weighted vector-valued bounds for T_A and T_A^* .

 \odot 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the remarkable work [21], Muckenhoupt characterized the class of weights w such that the Hardy– Littlewood maximal operator M satisfies the weighted L^p $(p \in [1, \infty))$ estimate

$$\|Mf\|_{L^{p,\infty}(\mathbb{R}^{n},w)} \lesssim \|f\|_{L^{p}(\mathbb{R}^{n},w)}.$$
(1.1)

The inequality (1.1) holds if and only if w satisfies the $A_p(\mathbb{R}^n)$ condition, that is, for $p \in (1, \infty)$,

$$[w]_{A_p} := \sup_Q \Bigl(\frac{1}{|Q|} \int_Q w(x) \mathrm{d}x \Bigr) \Bigl(\frac{1}{|Q|} \int_Q w^{-\frac{1}{p-1}}(x) \mathrm{d}x \Bigr)^{p-1} < \infty,$$

where the supremum is taken over all cubes in \mathbb{R}^n ; and

$$[w]_{A_1} \coloneqq \sup_{x \in \mathbb{R}^n} \frac{Mw(x)}{w(x)}.$$

 $\label{eq:https://doi.org/10.1016/j.na.2017.09.013} 0362-546 X (© 2017 Elsevier Ltd. All rights reserved.$

CrossMark

E-mail address: huguoen@yahoo.com.

 $[w]_{A_p}$ is called the A_p constant of w. Also, Muckenhoupt proved that M is bounded on $L^p(\mathbb{R}^n, w)$ if and only if w satisfies the $A_p(\mathbb{R}^n)$ condition. Since then, considerable attention has been paid to the theory of $A_p(\mathbb{R}^n)$ and the weighted norm inequalities with $A_p(\mathbb{R}^n)$ weights for main operators in Harmonic Analysis, see [10, Chapter 9] and related references therein.

However, the classical results on the weighted norm inequalities with $A_p(\mathbb{R}^n)$ weights did not reflect the quantitative dependence of the $L^p(\mathbb{R}^n, w)$ operator norm in terms of the relevant constant involving the weights. The question of the sharp dependence of the weighted estimates in terms of the $A_p(\mathbb{R}^n)$ constant specifically raised by Buckley [2], who proved that if $p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$, then

$$\|Mf\|_{L^{p}(\mathbb{R}^{n},w)} \lesssim_{n,p} [w]_{A_{p}}^{\frac{1}{p-1}} \|f\|_{L^{p}(\mathbb{R}^{n},w)}.$$
(1.2)

Moreover, the estimate (1.2) is sharp in the sense that the exponent 1/(p-1) cannot be replaced by a smaller one. Hytönen and Pérez [16] showed that

$$\|Mf\|_{L^{p}(\mathbb{R}^{n},w)} \lesssim_{n,p} \left([w]_{A_{p}} [w^{-\frac{1}{p-1}}]_{A_{\infty}} \right)^{\frac{1}{p}} \|f\|_{L^{p}(\mathbb{R}^{n},w)}$$
(1.3)

where and in the following, for a weight $u, [u]_{A_{\infty}}$ is defined by

$$[u]_{A_{\infty}} = \sup_{Q \subset \mathbb{R}^n} \frac{1}{u(Q)} \int_Q M(u\chi_Q)(x) \mathrm{d}x.$$

It is well known that for $w \in A_p(\mathbb{R}^n)$, $[w^{-\frac{1}{p-1}}]_{A_{\infty}} \leq [w]_{A_p}^{\frac{1}{p-1}}$. Thus, (1.3) is more subtle than (1.2). The sharp dependence of the weighted estimates of singular integral operators in terms of the $A_p(\mathbb{R}^n)$

The sharp dependence of the weighted estimates of singular integral operators in terms of the $A_p(\mathbb{R}^n)$ constant was much more complicated. Petermichl [23,24] solved this question for Hilbert transform and Riesz transform. Hytönen [14] proved that for a Calderón–Zygmund operator T and $w \in A_2(\mathbb{R}^n)$,

$$||Tf||_{L^2(\mathbb{R}^n, w)} \lesssim_n [w]_{A_2} ||f||_{L^2(\mathbb{R}^n, w)}.$$
(1.4)

This solved the so-called A_2 conjecture. Combining the estimate (1.4) and the extrapolation theorem in [8], we know that for a Calderón–Zygmund operator $T, p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$,

$$\|Tf\|_{L^{p}(\mathbb{R}^{n},w)} \lesssim_{n,p} [w]_{A_{p}}^{\max\{1,\frac{1}{p-1}\}} \|f\|_{L^{p}(\mathbb{R}^{n},w)}.$$
(1.5)

In [18], Lerner gave a simple proof of (1.4) by dominating the Calderón–Zygmund operator pointwisely using sparse operators.

Now let us consider a class of non-standard Calderón–Zygmund operators. For $x \in \mathbb{R}^n$, we denote by x_j $(1 \leq j \leq n)$ the *j*th variable of x and x' = x/|x|. Let Ω be homogeneous of degree zero, integrable on the unit sphere S^{n-1} and satisfy the vanishing condition that for all $1 \leq j \leq n$,

$$\int_{S^{n-1}} \Omega(x') x'_j \mathrm{d}x = 0. \tag{1.6}$$

Let A be a function on \mathbb{R}^n whose derivatives of order one in BMO(\mathbb{R}^n). Define the operator T_A by

$$T_A f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} (A(x) - A(y) - \nabla A(y)(x-y)) f(y) \mathrm{d}y.$$
(1.7)

The maximal singular integral operator associated with T_A is defined by

$$T_A^*f(x) = \sup_{\epsilon > 0} |T_{A,\epsilon}f(x)|,$$

Download English Version:

https://daneshyari.com/en/article/7222730

Download Persian Version:

https://daneshyari.com/article/7222730

Daneshyari.com