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a b s t r a c t

In this work we study stochastic Oldroyd type models for viscoelastic fluids in
Rd, d = 2, 3. We show existence and uniqueness of strong local maximal solutions
when the initial data are in Hs for s > d/2, d = 2, 3. Probabilistic estimate of the
random time interval for the existence of a local solution is expressed in terms of
expected values of the initial data.
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1. Introduction

Over the past few years, there have been many works devoted to viscoelastic fluids in dimensions two and
three. Most of these works are concerned about local existence of strong solutions, global existence of weak
solutions, necessary condition for blow-up (in the spirit of well-known Beale–Kato–Majda criterion [4]) and
global well-posedness for smooth solutions with small initial data.

In this work, we focus upon the classical Oldroyd type models for viscoelastic fluids (see Oldroyd [50]) in
Rd, d = 2, 3

∂v
∂t

+ (v · ∇)v − ν∆v + ∇p = µ1∇ · τ in Rd × (0, T ), (1.1)
∂τ

∂t
+ (v · ∇)τ + aτ + Q(τ, ∇v) = µ2D(v) in Rd × (0, T ), (1.2)
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∇ · v = 0 in Rd × (0, T ), (1.3)
v(0, ·) = v0, τ(0, ·) = τ0 in Rd. (1.4)

Here v is the velocity vector field which is assumed to be divergence free, τ is the non-Newtonian part of the
stress tensor (i.e., τ(x, t) is a (d, d) symmetric matrix), p is the pressure of the fluid, which is a scalar. The
parameters ν (the viscosity of the fluid), a (the reciprocal of the relaxation time), µ1 and µ2 (determined
by the dynamical viscosity of the fluid, the retardation time and a) are assumed to be non-negative. D(v)
is called the deformation tensor and is the symmetric part of the velocity gradient

D(v) = 1
2(∇v + ∇tv).

Q is a quadratic form in (τ, ∇v). As remarked in Chemin and Masmoudi [14], since the equation for the
stress tensor should be invariant under coordinate transformation, Q cannot be most general quadratic form,
and for Oldroyd fluids one usually chooses

Q(τ, ∇v) = τW(v) − W(v)τ − b (D(v)τ + τD(v)) ,

where b ∈ [−1, 1] is a constant and W(v) = 1
2 (∇v − ∇tv) is the vorticity tensor, and is the skew-symmetric

part of velocity gradient.
There is growing literature devoted to these systems and it is almost impossible to provide a complete

review on the topic. We shall restrict ourselves to a few significant works which are relevant to our paper.

1.1. Deterministic Oldroyd models

In comparison to the classical evolution equations, analysis of the above model is significantly difficult
due to the lack of diffusion in the τ Eq. (1.6) and structure of Q. To be a little more precise, one of the key
difficulties in proving local existence with diffusion only in the v equation stems from the nonlinear terms.
Since Hs is an algebra for s > d/2, so one obtains

|⟨(v · ∇)τ, φ⟩Hs | ≤ ∥v∥Hs∥∇τ∥Hs∥φ∥Hs .

Thus we must estimate ∥∇τ∥Hs , and if we start with τ0 ∈ Hs we do not have any control over the Hs

norm of ∇τ due to lack of Hs+1 bound for τ . Due to the same reasons, the semigroup method to mild
solutions may not work in this case and also the local m-accretivity property is not available due to the
absence of a diffusive term. However, similar issues appear in Euler equation or in semi-dissipative/ideal
magnetohydrodynamic systems and there are sufficient literature (see e.g. Fefferman et al. [17]) suggesting
how to tackle this issue. On the other hand, due to the special structure of Q, the formal L2-energy estimate
of the system (1.1)–(1.4) appears as following:

1
2

d

dt
(µ2∥v(t)∥2

L2 + µ1∥τ(t)∥2
L2) + νµ2∥∇v(t)∥2

L2 + aµ1∥τ(t)∥2
L2 ≤ |b| ∥∇v(t)∥L∞∥τ(t)∥2

L2 .

Since by the Brezis–Wainger type logarithmic Sobolev inequality, L∞-norm of gradient of velocity field can
be bounded by that of vorticity field for the Sobolev exponent strictly bigger than d/2 + 1, the difficulty
here arises in getting an L∞ estimate on the vorticity. Indeed, at first glance it seems to be hopeless because
the vorticity equation involves a transport term as well as a nonlocal term. However, one needs to perform
a losing estimate (see, Chemin–Masmoudi [14]) for the transport equation satisfied by τ that allow us to
obtain a Beale–Kato–Majda (see [4]) type sufficient condition of non-breakdown.

Due to the parabolic–hyperbolic coupling and the special structure of Q, the corresponding stationary
problem is also interesting and was studied by Renardy [55]. The existence and uniqueness of local strong
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