Semilinear fractional elliptic equations with measures in unbounded domain

Huyuan Chen*, Jianfu Yang
Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China

A R T I C L E I N F O

Article history:

Received 26 May 2016
Accepted 10 August 2016
Communicated by Enzo Mitidieri

MSC:

35R11
35J61
35R06
Keywords:
Fractional Laplacian
Radon measure
Dirac mass
Singularities

Abstract

In this paper, we study the existence of nonnegative weak solutions to $(E)(-\Delta)^{\alpha} u+$ $h(u)=\nu$ in a general regular domain Ω, which vanish in $\mathbb{R}^{N} \backslash \Omega$, where $(-\Delta)^{\alpha}$ denotes the fractional Laplacian with $\alpha \in(0,1), \nu$ is a nonnegative Radon measure and $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a continuous nondecreasing function satisfying a subcritical integrability condition.

Furthermore, we analyze properties of weak solution u_{k} to (E) with $\Omega=\mathbb{R}^{N}$, $\nu=k \delta_{0}$ and $h(s)=s^{p}$, where $k>0, p \in\left(0, \frac{N}{N-2 \alpha}\right)$ and δ_{0} denotes Dirac mass at the origin. Finally, we show for $p \in\left(0,1+\frac{2 \alpha}{N}\right]$ that $u_{k} \rightarrow \infty$ in \mathbb{R}^{N} as $k \rightarrow \infty$, and for $p \in\left(1+\frac{2 \alpha}{N}, \frac{N}{N-2 \alpha}\right)$ that $\lim _{k \rightarrow \infty} u_{k}(x)=c|x|^{-\frac{2 \alpha}{p-1}}$ with $c>0$, which is a classical solution of $(-\Delta)^{\alpha} u+u^{p}=0$ in $\mathbb{R}^{N} \backslash\{0\}$.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω be a regular domain (not necessary bounded) of $\mathbb{R}^{N}(N \geq 2), \alpha \in(0,1)$ and $d \omega(x)=\frac{d x}{1+|x|^{N+2 \alpha}}$. Denote by $\mathfrak{M}^{b}(\Omega)$ the space of the Radon measures ν in Ω such that $\|\nu\|_{\mathfrak{M}^{b}(\Omega)}:=|\nu|(\Omega)<+\infty$ and by $\mathfrak{M}_{+}^{b}(\Omega)$ the nonnegative cone. The purpose of this paper is to study the existence of nonnegative weak solutions to semilinear fractional elliptic equations

$$
\begin{align*}
(-\Delta)^{\alpha} u+h(u)=\nu & \text { in } \Omega \\
u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega \tag{1.1}
\end{align*}
$$

where $\nu \in \mathfrak{M}_{+}^{b}(\Omega), h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a continuous nondecreasing function and $(-\Delta)^{\alpha}$ denotes the fractional Laplacian of exponent α defined by

$$
(-\Delta)^{\alpha} u(x)=\lim _{\epsilon \rightarrow 0^{+}}(-\Delta)_{\epsilon}^{\alpha} u(x)
$$

[^0]where for $\epsilon>0$,
$$
(-\Delta)_{\epsilon}^{\alpha} u(x)=-\int_{\mathbb{R}^{N}} \frac{u(z)-u(x)}{|z-x|^{N+2 \alpha}} \chi_{\epsilon}(|x-z|) d z
$$
and
\[

\chi_{\epsilon}(t)= $$
\begin{cases}0, & \text { if } t \in[0, \epsilon], \\ 1, & \text { if } t>\epsilon\end{cases}
$$
\]

In the pioneering work [3] (also see [1]), Brezis studied the existence of weak solutions to second order elliptic problem

$$
\begin{align*}
-\Delta u+h(u)=\nu & \text { in } \Omega, \tag{1.2}\\
u=0 & \text { on } \partial \Omega,
\end{align*}
$$

where Ω is a bounded C^{2} domain in $\mathbb{R}^{N}(N \geq 3), \nu$ is a bounded Radon measure in Ω, and the function $h: \mathbb{R} \rightarrow \mathbb{R}$ is nondecreasing, positive on ($0,+\infty$) and satisfies the subcritical assumption:

$$
\int_{1}^{+\infty}(h(s)-h(-s)) s^{-2 \frac{N-1}{N-2}} d s<+\infty
$$

In particular case that $0 \in \Omega, h(s)=s^{q}$ and $\nu=k \delta_{0}$ with $k>0$, Brezis et al. showed that (1.2) admits a unique weak solution v_{k} for $1<q<N /(N-2)$, while no solution exists if $q \geq N /(N-2)$. Later on, Véron in [20,21] proved that if $1<q<N /(N-2)$, the limit of v_{k} is a strong singular solution of

$$
\begin{align*}
-\Delta u+u^{q}=0 & \text { in } \Omega \backslash\{0\}, \tag{1.3}\\
u=0 & \text { on } \partial \Omega .
\end{align*}
$$

After that, Brezis-Véron in [4] found that the problem (1.3) admits only the zero solution if $q \geq N /(N-2)$.
During the last years, there has also been a renewed and increasing interest in the study of linear and nonlinear integro-differential operators, especially, the fractional Laplacian, motivated by various applications in physics and by important links on the theory of Lévy processes, refer to [5,7,6,8-13,15,18,19]. In a recent work, Karisen-Petitta-Ulusoy in [16] used the duality approach to study the fractional elliptic equation

$$
(-\Delta)^{\alpha} v=\mu \quad \text { in } \mathbb{R}^{N}
$$

where μ is a Radon measure with compact support. More recently, Chen-Véron in [13] studied the semilinear fractional elliptic problem (1.1) when Ω is an open bounded regular set in \mathbb{R}^{N} and ν is a Radon measure such that $\int_{\Omega} d^{\beta} d|\nu|<+\infty$ with $\beta \in[0, \alpha]$ and $d(x)=\operatorname{dist}(x, \partial \Omega)$. The existence and uniqueness of weak solution are obtained when the function h is nondecreasing and satisfies

$$
\begin{equation*}
\int_{1}^{+\infty}(h(s)-h(-s)) s^{-1-k_{\alpha, \beta}} d s<+\infty \tag{1.4}
\end{equation*}
$$

where

$$
k_{\alpha, \beta}= \begin{cases}\frac{N}{N-2 \alpha}, & \text { if } \beta \in\left[0, \frac{N-2 \alpha}{N} \alpha\right] \tag{1.5}\\ \frac{N+\alpha}{N-2 \alpha+\beta}, & \text { if } \beta \in\left(\frac{N-2 \alpha}{N} \alpha, \alpha\right] .\end{cases}
$$

Motivated by these results and in view of the non-local character of the fractional Laplacian we are interested in the existence of weak solutions to problem (1.1) when Ω is a general regular domain, including $\Omega=\mathbb{R}^{N}$. Before stating our main results in this paper, we introduce the definition of weak solution to (1.1).

https://daneshyari.com/en/article/7222737

Download Persian Version:
https://daneshyari.com/article/7222737

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: chenhuyuan@yeah.net (H. Chen), jfyang_2000@yahoo.com (J. Yang).

