Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Semilinear fractional elliptic equations with measures in unbounded domain

Huyuan Chen^{*}, Jianfu Yang

Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China

ARTICLE INFO

Article history: Received 26 May 2016 Accepted 10 August 2016 Communicated by Enzo Mitidieri

MSC: 35R11 35J61 35R06

Keywords: Fractional Laplacian Radon measure Dirac mass Singularities

ABSTRACT

In this paper, we study the existence of nonnegative weak solutions to $(E)(-\Delta)^{\alpha}u + h(u) = \nu$ in a general regular domain Ω , which vanish in $\mathbb{R}^N \setminus \Omega$, where $(-\Delta)^{\alpha}$ denotes the fractional Laplacian with $\alpha \in (0, 1)$, ν is a nonnegative Radon measure and $h : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous nondecreasing function satisfying a subcritical integrability condition.

Furthermore, we analyze properties of weak solution u_k to (E) with $\Omega = \mathbb{R}^N$, $\nu = k\delta_0$ and $h(s) = s^p$, where k > 0, $p \in (0, \frac{N}{N-2\alpha})$ and δ_0 denotes Dirac mass at the origin. Finally, we show for $p \in (0, 1 + \frac{2\alpha}{N}]$ that $u_k \to \infty$ in \mathbb{R}^N as $k \to \infty$, and for $p \in (1 + \frac{2\alpha}{N}, \frac{N}{N-2\alpha})$ that $\lim_{k\to\infty} u_k(x) = c |x|^{-\frac{2\alpha}{p-1}}$ with c > 0, which is a classical solution of $(-\Delta)^{\alpha}u + u^p = 0$ in $\mathbb{R}^N \setminus \{0\}$.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω be a regular domain (not necessary bounded) of \mathbb{R}^N $(N \ge 2)$, $\alpha \in (0,1)$ and $d\omega(x) = \frac{dx}{1+|x|^{N+2\alpha}}$. Denote by $\mathfrak{M}^b(\Omega)$ the space of the Radon measures ν in Ω such that $\|\nu\|_{\mathfrak{M}^b(\Omega)} := |\nu|(\Omega) < +\infty$ and by $\mathfrak{M}^b_+(\Omega)$ the nonnegative cone. The purpose of this paper is to study the existence of nonnegative weak solutions to semilinear fractional elliptic equations

$$(-\Delta)^{\alpha} u + h(u) = \nu \quad \text{in } \Omega, u = 0 \quad \text{in } \mathbb{R}^N \setminus \Omega,$$
(1.1)

where $\nu \in \mathfrak{M}^b_+(\Omega)$, $h : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous nondecreasing function and $(-\Delta)^{\alpha}$ denotes the fractional Laplacian of exponent α defined by

$$(-\Delta)^{\alpha}u(x) = \lim_{\epsilon \to 0^+} (-\Delta)^{\alpha}_{\epsilon}u(x),$$

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.na.2016.08.003} 0362-546 X (© 2016 Elsevier Ltd. All rights reserved.$

CrossMark

E-mail addresses: chenhuyuan@yeah.net (H. Chen), jfyang_2000@yahoo.com (J. Yang).

where for $\epsilon > 0$,

$$(-\Delta)^{\alpha}_{\epsilon}u(x) = -\int_{\mathbb{R}^N} \frac{u(z) - u(x)}{|z - x|^{N+2\alpha}} \chi_{\epsilon}(|x - z|) dz$$

and

$$\chi_{\epsilon}(t) = \begin{cases} 0, & \text{if } t \in [0, \epsilon], \\ 1, & \text{if } t > \epsilon. \end{cases}$$

In the pioneering work [3] (also see [1]), Brezis studied the existence of weak solutions to second order elliptic problem

$$-\Delta u + h(u) = \nu \quad \text{in } \Omega, u = 0 \quad \text{on } \partial\Omega,$$
(1.2)

where Ω is a bounded C^2 domain in $\mathbb{R}^N (N \ge 3)$, ν is a bounded Radon measure in Ω , and the function $h : \mathbb{R} \to \mathbb{R}$ is nondecreasing, positive on $(0, +\infty)$ and satisfies the subcritical assumption:

$$\int_{1}^{+\infty} (h(s) - h(-s))s^{-2\frac{N-1}{N-2}}ds < +\infty.$$

In particular case that $0 \in \Omega$, $h(s) = s^q$ and $\nu = k\delta_0$ with k > 0, Brezis et al. showed that (1.2) admits a unique weak solution v_k for 1 < q < N/(N-2), while no solution exists if $q \ge N/(N-2)$. Later on, Véron in [20,21] proved that if 1 < q < N/(N-2), the limit of v_k is a strong singular solution of

$$-\Delta u + u^{q} = 0 \quad \text{in } \Omega \setminus \{0\},$$

$$u = 0 \quad \text{on } \partial\Omega.$$
(1.3)

After that, Brezis–Véron in [4] found that the problem (1.3) admits only the zero solution if $q \ge N/(N-2)$.

During the last years, there has also been a renewed and increasing interest in the study of linear and nonlinear integro-differential operators, especially, the fractional Laplacian, motivated by various applications in physics and by important links on the theory of Lévy processes, refer to [5,7,6,8–13,15,18,19]. In a recent work, Karisen–Petitta–Ulusoy in [16] used the duality approach to study the fractional elliptic equation

$$(-\Delta)^{\alpha}v = \mu \quad \text{in } \mathbb{R}^N$$

where μ is a Radon measure with compact support. More recently, Chen–Véron in [13] studied the semilinear fractional elliptic problem (1.1) when Ω is an open bounded regular set in \mathbb{R}^N and ν is a Radon measure such that $\int_{\Omega} d^{\beta} d|\nu| < +\infty$ with $\beta \in [0, \alpha]$ and $d(x) = dist(x, \partial \Omega)$. The existence and uniqueness of weak solution are obtained when the function h is nondecreasing and satisfies

$$\int_{1}^{+\infty} (h(s) - h(-s))s^{-1 - k_{\alpha,\beta}} ds < +\infty,$$
(1.4)

where

$$k_{\alpha,\beta} = \begin{cases} \frac{N}{N-2\alpha}, & \text{if } \beta \in \left[0, \frac{N-2\alpha}{N}\alpha\right], \\ \frac{N+\alpha}{N-2\alpha+\beta}, & \text{if } \beta \in \left(\frac{N-2\alpha}{N}\alpha, \alpha\right]. \end{cases}$$
(1.5)

Motivated by these results and in view of the non-local character of the fractional Laplacian we are interested in the existence of weak solutions to problem (1.1) when Ω is a general regular domain, including $\Omega = \mathbb{R}^N$. Before stating our main results in this paper, we introduce the definition of weak solution to (1.1).

Download English Version:

https://daneshyari.com/en/article/7222737

Download Persian Version:

https://daneshyari.com/article/7222737

Daneshyari.com