A measure-type Lagrange multiplier for the elastic-plastic torsion

Sofia Giuffrè ${ }^{\mathrm{a}, *}$, Antonino Maugeri ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ D.I.I.E.S., "Mediterranea" University of Reggio Calabria, Loc. Feo di Vito, 89122 Reggio Calabria, Italy
${ }^{\text {b }}$ Department of Mathematics and Computer Science, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy

ARTICLE INFO

Article history:

Received 13 September 2013
Accepted 31 January 2014
Communicated by Enzo Mitidieri

Keywords:

Elastic-plastic torsion
Lagrange multipliers
Variational inequalities
Radon measure

Abstract

The existence of Lagrange multiplier as a Radon measure is ensured for an elastic-plastic torsion problem associated to a linear operator. The result is obtained by means of strong duality theory.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The elastic-plastic torsion problem and its relationships with the obstacle problem have been deeply investigated in years 1965-1980. Later on these studies have been resumed, with particular regards to existence and properties of Lagrange multipliers.

According to von Mises [1] (see also [2,3]), the elastic-plastic torsion problem of a cylindrical bar with cross section Ω is to find a function $\psi(x)$ which vanishes on the boundary $\partial \Omega$ and, together with its first derivatives, is continuous on Ω; everywhere in Ω the gradient of ψ must have an absolute value (modulus) less than or equal to a given positive constant τ; whenever in Ω the strict inequality holds, the function ψ must satisfy the differential equation $\Delta \psi=-2 \mu \theta$, where the positive constants μ and θ denote the shearing modulus and the angle of twist per unit length respectively.

In the planar case the existence and the properties of a smooth solution of the problem have been studied by Ting [3-5], formulating it as a variational minimum problem.

Multidimensional case has been studied in [6], where the author considers the following variational inequality: Find $u \in K_{\nabla}$ such that

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}}\left(\frac{\partial v}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x \geq \int_{\Omega} f(v-u) d x, \quad \forall v \in K_{\nabla} \tag{1}
\end{equation*}
$$

where

$$
K_{\nabla}=\left\{v \in H_{0}^{1, \infty}(\Omega): \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \leq 1, \text { a.e. on } \Omega\right\}
$$

[^0]with Ω open, bounded subset of \mathbb{R}^{n} either convex or with boundary of class $C^{1,1}, f=$ const. >0, and proves the existence of a Lagrange multiplier, namely, if u is the solution of variational inequality (1), then there exists a unique $\mu \in L^{\infty}(\Omega)$ such that:
\[

\left\{$$
\begin{array}{l}
\mu \geq 0 \quad \text { a.e. in } \Omega \tag{2}\\
\mu(1-|\nabla u|)=0 \quad \text { a.e. in } \Omega \\
-\Delta u-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\mu \frac{\partial u}{\partial x_{i}}\right)=f \text { in the sense of } D^{\prime}(\Omega)
\end{array}
$$\right.
\]

that is the solution of variational inequality (1) solves the elastic-plastic torsion problem. Conversely, if $u \in K_{\nabla}$ and there exists μ satisfying (2), then it is easily proved that u is the solution of (1).

The location and shape of the elastic and plastic regions $E=\{x \in \Omega:|\nabla u(x)|<1\}$ and $P=\{x \in \Omega:|\nabla u(x)|=1\}$ and the free boundary are studied in [7], while reinforcement problems are studied in [8].

Recently in [9] the authors prove the existence of Lagrange multipliers for the following variational inequality, more general than (1):

Find $u \in K_{\nabla}$ such that:

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}}\left(\frac{\partial v}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x+\int_{\Omega} \lambda u(v-u) d x \geq \int_{\Omega} f(v-u) d x, \quad \forall v \in K_{\nabla} \tag{3}
\end{equation*}
$$

where λ and f are nonnegative constants.
In [10], the authors prove, under more general assumptions with respect to previous results, the existence of a Lagrange multiplier as a positive Radon measure.

Aim of the paper is to prove the existence of a Lagrange multiplier as a positive Radon measure for the following variational inequality more general than (1)

$$
\begin{equation*}
\int_{\Omega} \mathcal{L} u(v-u) d x \geq \int_{\Omega} f(v-u) d x, \quad \forall v \in K_{\nabla} \tag{4}
\end{equation*}
$$

with

$$
\mathcal{L} u=-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j} \frac{\partial u}{\partial x_{j}}\right)+\sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x_{i}}+c u
$$

and $f \in L^{p}(\Omega), p>1$.
Note that variational inequality (4) cannot be reduced to a problem of minimum of a convex functional as considered in [10] and the assumptions are different too.

In the paper the existence of Lagrange multipliers as a Radon measure is ensured by means of strong duality theory in classical sense. This theory cannot be applied in order to obtain the existence of Lagrange multipliers as a L^{2} function since in those settings the interior of the ordering cone, which defines the sign constraints, is empty (see [11,12]).

Using a very recent strong duality theory introduced in [13-15], the authors in [9] prove the existence of a L^{∞} Lagrange multiplier for (4) assuming a constraint qualification condition (Assumption S), that is a necessary and sufficient condition in order that strong duality holds. In [16] the authors notice that such existence of a L^{∞} Lagrange multiplier for (4) can be obtained in an easier way using Assumption S^{\prime}, which is still equivalent to the strong duality. We refer also to [17], where an equivalence condition for the strong duality is given in a very general setting: with no condition on the map and constrains.

Finally variational problems with non-constant gradient constraints or with curl constraints have been studied in [18-20].

2. Main results

Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded domain either convex or with boundary of class $C^{1,1}$. Let us consider the linear elliptic operator

$$
\begin{equation*}
\mathscr{L} u=-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j} \frac{\partial u}{\partial x_{j}}\right)+\sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x_{i}}+c u \tag{5}
\end{equation*}
$$

with associated bilinear form on $H_{0}^{1, \infty}(\Omega) \times H_{0}^{1, \infty}(\Omega)$ given by

$$
a(u, v)=\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}}+\sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x_{i}} v+c u v\right) d x
$$

https://daneshyari.com/en/article/7222749

Download Persian Version:
https://daneshyari.com/article/7222749

Daneshyari.com

[^0]: * Corresponding author. Tel.: +39 0965875474.

 E-mail addresses: sofia.giuffre@unirc.it (S. Giuffrè), maugeri@dmi.unict.it (A. Maugeri).

