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a b s t r a c t

We study travelingwave solutions of an equation for surfacewaves ofmoderate amplitude
arising as a shallowwater approximation of the Euler equations for inviscid, incompressible
and homogeneous fluids. We obtain solitary waves of elevation and depression, including
a family of solitary waves with compact support, where the amplitude may increase
or decrease with respect to the wave speed. Our approach is based on techniques
from dynamical systems and relies on a reformulation of the evolution equation as an
autonomous Hamiltonian system which facilitates an explicit expression for bounded
orbits in the phase plane to establish existence of the corresponding periodic and solitary
traveling wave solutions.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction and main result

A number of competing nonlinear model equations for water waves have been proposed to this day to account for
fascinating phenomena, such as wave breaking or solitary waves, which are not captured by linear theory. The well-known
Camassa–Holm equation [1] is one of the most prominent examples, due to its rich structural properties. It is an integrable
infinite-dimensional Hamiltonian system [2–4] whose solitary waves are solitons [5,6]. Some of its classical solutions
develop singularities in finite time in the form of wave breaking [7], and recover in the sense of global weak solutions
after blow up [8,9]. For a discussion on integrability in the periodic case we refer the reader to [10,11], and a classification
of weak traveling wave solutions of the Camassa–Holm equation may be found in [12]. The manifold of its enticing features
led Johnson to demonstrate the relevance of the Camassa–Holm equation as a model for the propagation of shallow water
waves of moderate amplitude. He proved that the horizontal component of the fluid velocity field at a certain depth within
the fluid is indeed described by a Camassa–Holm equation [13,14]. Constantin and Lannes [15] followed up on the matter
in search of a suitable corresponding equation for the free surface and derived an evolution equation for surface waves of
moderate amplitude in the shallow water regime,

ut + ux + 6uux − 6u2ux + 12u3ux + uxxx − uxxt + 14uuxxx + 28uxuxx = 0. (1)

The authors show that Eq. (1) approximates the governing equations to the same order as the Camassa–Holm equation,
and also prove that the Cauchy problem on the line associated to (1), is locally well-posed [15]. Employing a semigroup
approach due to Kato [16], Duruk [17] shows that this result also holds true for a larger class of initial data, as well as for the
corresponding spatially periodic Cauchy problem [18]. Consequently, solutions of (1) depend continuously on their initial
data in Hs for s > 3/2, and it can be shown that this dependence is not uniformly continuous [19]. In the context of Besov

∗ Corresponding author. Tel.: +34 639256459.
E-mail addresses: gasull@mat.uab.cat (A. Gasull), anna.geyer@univie.ac.at, annageyer@mat.uab.cat, geyer.anna@gmail.com (A. Geyer).

http://dx.doi.org/10.1016/j.na.2014.02.005
0362-546X/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/
licenses/by-nc-sa/3.0/).

http://dx.doi.org/10.1016/j.na.2014.02.005
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2014.02.005&domain=pdf
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
mailto:gasull@mat.uab.cat
mailto:anna.geyer@univie.ac.at
mailto:annageyer@mat.uab.cat
mailto:geyer.anna@gmail.com
http://dx.doi.org/10.1016/j.na.2014.02.005
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


106 A. Gasull, A. Geyer / Nonlinear Analysis 102 (2014) 105–119

spaces, well-posedness is discussed [20] using Littlewood–Paley decomposition, along with a study about analytic solutions
and persistence properties of strong solutions. One of the important aspects of Eq. (1) lies in its relevance for capturing the
non-linear phenomenon of wave breaking [15,17], a feature it shares with the Camassa–Holm equation. While the latter
equation is known to possess global solutions [9,21], it is not apparent how to obtain global control of the solutions of
Eq. (1), owing to its involved structure and due to the higher order nonlinearities. However, passing to a moving frame one
can study so-called traveling wave solutions, whose wave profiles move at constant speed in one direction without altering
their shape. Introducing the traveling wave Ansatz

ξ = x − c t, u(ξ) = u(t, x), (2)

Eq. (1) reads upon integration

(1 − c)u + 3u2
− 2u3

+ 3u4
+ (1 + c + 14u)ü + 7u̇ = E, (3)

for some real constant E, where the dot denotes differentiationwith respect to ξ . Existence of smooth solitarywave solutions
of (3) which decay to zero at infinity has been established [22] for wave speeds c > 1, and their orbital stability has been
deduced [23] employing an approach due to Grillakis, Shatah and Strauss [24] taking advantage of the Hamiltonian structure
of (1). In the present paper we set out to improve the existence result [22] by loosening the assumption that solitary waves
tend to zero at infinity. Allowing for a decay to an arbitrary constant, we establish existence of a variety of novel traveling
wave solutions of (1).

Theorem 1.1. For every speed c ∈ R\{c∗
} there exist peaked periodic, as well as smooth solitary and periodic traveling

wave solutions of (1). Periodic waves may be obtained also for c = c∗, where c∗
≈ 0.35328 is the unique real solution of

3c3 + 30c2 + 1031c − 368 = 0.
Moreover, the solitary waves can be characterized in terms of two parameters – the wave speed c and the level of the

undisturbed water surface s – allowing us to determine the exact regions in this parameter space which give rise to the following
types of waves, cf. Fig. 1:

• Solitary waves in C1 with compact support on R (along the straight line c + 1 + 14s = 0).
• Smooth solitary waves of elevation whose amplitude is strictly increasing (in region I) or decreasing (in regions II and III)

with respect to c, once E is fixed.
• Smooth solitary waves of depression whose amplitude is strictly increasing (in region V) or decreasing (in region IV) with

respect to c, once E is fixed.

All solitary waves are symmetric with respect to their unique crest/trough, they are monotonic and decay exponentially to the
undisturbed water surface s at infinity.

The proof of these results hinges on the observation that for traveling waves, Eq. (1) may be written as an autonomous
Hamiltonian system involving two parameters. This insight allows us to explicitly determine bounded orbits in the phase
plane which correspond to solitary and periodic traveling waves of elevation as well as depression (Sections 2.1 and 2.2).
Moreover, we characterize all solitary traveling waves in terms of two parameters—the wave speed c and the water level s
of the undisturbed surface at infinity. This enables us to prove the existence a family of solitary waves with compact support
(Section 2.3). Furthermore, we obtain a family of peaked periodic waves (Section 2.4). Our work also extends the analysis
of qualitative properties regarding the shape of solitary waves given in [22]: we prove that the profile is strictly monotonic
between crest and trough, and derive explicit algebraic curves in the parameter space (c, s) to determine the regions where
their amplitude is increasing and decreasing with respect to the wave speed c once a value E is fixed (Section 3). These are
quite remarkable properties of solitary waves which, to our knowledge, contribute novel aspects to the study of traveling
waves in evolution equations for water waves. Our approach is in fact applicable to a large class of nonlinear dispersive
equations, whichwe exemplify by a discussion of travelingwaves of the aforementioned Camassa–Holm equation, including
peaked continuous solitary waves (Section 4). Some of the more involved computations regarding the algebraic curves are
carried out in the Appendix.

2. Existence of traveling waves

The proof of Theorem 1.1 relies on the fact that Eq. (1) has very nice structural features.

2.1. Hamiltonian formulation

Consider a general partial differential equationwhich, upon introducing the travelingwaveAnsatz (2) can be transformed
into an autonomous ordinary differential equation of the form

ü(u − ū) +
1
2
(u̇)2 + F ′(u) = 0, (4)
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