

Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Exact boundary behavior of the unique positive solution to some singular elliptic problems*

Noureddine Zeddini*, Ramzi Alsaedi, Habib Mâagli

Department of Mathematics, College of Sciences and Arts, King Abdulaziz University, Rabigh Campus, P.O. Box 344, Rabigh 21911, Saudi Arabia

ARTICLE INFO

Article history: Received 22 March 2013 Accepted 7 May 2013 Communicated by S. Carl

MSC: 31C15 34B27 35K10

Keywords: Semilinear elliptic equations Singular Dirichlet problem The boundary behavior

ABSTRACT

In this paper, we give an exact asymptotic of the unique solution to the following singular boundary value problem $-\Delta u = a(x)g(u), x \in \Omega, u > 0$, in $\Omega, u_{|\partial\Omega} = 0$. Here Ω is a C^2 -bounded domain in \mathbb{R}^n $(n \geq 2), g \in C^1((0, \infty), (0, \infty))$ is nonincreasing on $(0, \infty)$ with $\lim_{t \to 0} g'(t) \int_0^t \frac{ds}{g(s)} = -C_g \leq 0$ and the function a is in $C_{loc}^{\alpha}(\Omega), 0 < \alpha < 1$ satisfying

$$0 < a_1 = \liminf_{d(x) \to 0} \frac{a(x)}{h(d(x))} \le \limsup_{d(x) \to 0} \frac{a(x)}{h(d(x))} = a_2 < \infty,$$

where $h(t)=c\,t^{-\lambda}\exp(\int_t^\eta\frac{z(s)}{s}ds),\,\lambda\leq 2,\,c>0$ and z continuous on $[0,\eta]$ for some $\eta>0$ such that z(0)=0. Two applications of this result are also given. The first concerns the boundary behavior of the unique solution of $-\Delta u+\frac{\beta}{u}|\nabla u|^2=a(x)g(u)$ that vanishes on the boundary and the second concerns the behavior of u in the case where the open set Ω is an annular and the behaviors of the function u0 on the interior boundary and the exterior boundary may be different.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω be a C^2 -bounded domain in \mathbb{R}^n , $n \geq 2$, a be a nonnegative function in $C^{\alpha}_{loc}(\Omega)$, $(0 < \alpha < 1)$ and g be a nonnegative nonincreasing function on $(0, \infty)$. The singular nonlinear Dirichlet problem

$$\begin{cases} -\Delta u = a(x)g(u), & x \in \Omega, \\ u > 0, & \text{in } \Omega, u_{|\partial\Omega} = 0, \end{cases}$$
 (1.1)

has been extensively studied and the questions of existence, uniqueness and the boundary behavior are investigated. The problem (1.1) arises in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids, chemical heterogeneous catalysts, as well as in the theory of heat conduction in electrical materials (see [1–4] and the references therein).

When a=1 on Ω , Crandall, Rabinowitz and Tartar showed in [1] that problem (1.1) has a unique classical solution u in Ω such that

 $c_1 p(d(x)) \le u(x) \le c_2 p(d(x))$, near the boundary of Ω ,

E-mail addresses: noureddine.zeddini@ipein.rnu.tn (N. Zeddini), ramzialsaedi@yahoo.co.uk (R. Alsaedi), habib.maagli@fst.rnu.tn (H. Mâagli).

[†] This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grants No. (662-007-D1433). The authors, therefore acknowledge with thanks DSR technical and financial support.

^{*} Corresponding author. Tel.: +966 530175733.

where c_1 , c_2 are positive constants, d(x) is the Euclidean distance from x to the boundary and p is the local nonnegative solution of the problem -p''(s) = g(p(s)) in $(0, \eta)$, p(0) = 0. In particular for $g(t) = t^{-\gamma}$, $\gamma > 1$, the solution u satisfies

$$c_1 \left(d(x) \right)^{\frac{2}{1+\gamma}} \le u(x) \le c_2 \left(d(x) \right)^{\frac{2}{1+\gamma}}, \quad \text{near the boundary of } \Omega.$$
 (1.2)

In [5], Lazer and Mckenna showed that for $g(t) = t^{-\gamma}$ ($\gamma > 1$) the inequality (1.2) continues to hold on $\overline{\Omega}$ and instead of a=1 in Ω , they assume that

$$0 < b_1 \le a(x)(d(x))^{\sigma} \le b_2$$
, for all $x \in \overline{\Omega}$,

where b_1, b_2 are positive constants and $\sigma \in (0, 2)$. Then they proved that for $\gamma > 1$, there exist positive constants c_1 and c_2 such that

$$c_1 (d(x))^{\frac{2}{1+\gamma}} \le u(x) \le c_2 (d(x))^{\frac{2-\sigma}{1+\gamma}}, \quad \text{for } x \in \overline{\Omega}.$$

When $a \in C^{\alpha}(\overline{\Omega})$ satisfies the following assumptions: there exist $\delta_0 > 0$ and a positive non-decreasing function $k_1 \in C(0, \delta_0)$ such that

$$(a_{01}) \lim_{d(x)\to 0} \frac{a(x)}{k_1(d(x))} = a_0 \in (0, \infty),$$

$$(a_{02}) \lim_{t\to 0^+} k_1(t)g(t) = \infty;$$

and $g \in C^1((0,\infty),(0,\infty))$ with $\lim_{s\to 0^+} g(s) = \infty$ and g is non-decreasing on $(0,\infty)$ and satisfies the following conditions

- (g_{01}) there exist positive c_0 , η_0 and $\gamma \in (0, 1)$ such that $g(s) \leq c_0 s^{-\gamma}$, $\forall s \in (0, \eta_0)$;
- (g₀₂) there exist $\theta > 0$ and $s_0 \ge 1$ such that $g(\xi s) \ge \xi^{-\theta} g(s)$ for all $\xi \in (0, 1)$ and $0 < s \le s_0 \xi$; (g₀₃) the mapping $\xi \in (0, \infty) \to T(\xi) = \lim_{s \to 0^+} \frac{g(\xi s)}{\xi g(s)}$ is a continuous function;

Ghergu and Radulescu [6] showed that the unique solution u of problem (1.1) satisfies $u \in C^{1,1-\alpha}(\overline{\Omega}) \cap C^2(\Omega)$ and

$$\lim_{d(x)\to 0} \frac{u(x)}{\psi_3(d(x))} = \xi_0,\tag{1.3}$$

where $T(\xi_0) = b_0^{-1}$ and $\psi_3 \in C^1([0, \delta_1]) \cap C^2((0, \delta_1])$ $(\delta_1 \in (0, \delta_0))$ is the local solution of the problem $-\psi_3''(t) = k_1(t)g(\psi_3(t)), \psi_3(t) > 0, 0 < t < \delta_1, \psi_3(0) = 0.$

In [7], Zhang extended the result of Ghergu and Radulescu [6] to the case where g is normalized regularly varying at zero with index $-\gamma$ ($\gamma > 0$) and k_1 in (a_{01}) is normalized regularly varying at zero with index $-\beta$ ($\beta \in (0,2)$).

Recently, Ben Othman et al. [8] and Gontara et al. [9] extended the results of [6,7] to a large class of functions a which belongs to the Kato class $K(\Omega)$ and g is normalized regularly varying at zero with index $-\gamma$ ($\gamma \geq 0$). In particular, they established an exact boundary behavior of the unique classical solution of the problem $-\Delta\omega=a(x), \omega>0$ in Ω , $\omega_{|\partial\Omega}=0$, when a satisfies

 $(a_{03}) \ a \in C^{\alpha}_{loc}(\Omega)$ for some $0 < \alpha < 1$, is positive in Ω and

$$0<\widetilde{a}_1=\liminf_{d(x)\to 0}\frac{a(x)}{k_1(d(x))}\leq \limsup_{d(x)\to 0}\frac{a(x)}{k_1(d(x))}=\widetilde{a}_2<\infty,$$

with

$$k_1(t) = t^{-2} \prod_{i=1}^{m} \left(\log_i(t^{-1}) \right)^{-\mu_i}, \quad t \in (0, \delta_0),$$
 (1.4)

where $\log_i(t^{-1}) = \log \circ \log \circ \log \circ \cdots \circ \log(t^{-1})$ and $\mu_1 = \mu_2 = \cdots = \mu_{j-1} = 1$, $\mu_j > 1$ and $\mu_i \in \mathbb{R}$ for $j+1 \le i \le m$.

Inspired by some ideas in [8,9], the authors in [10] extend the previous results on the boundary behavior of the solution u of problem 1.1 to the case where k_1 is given by (1.4) or k_1 lies into a class of functions Λ that was introduced by Cîrstea and Rădulescu in [11] for non-decreasing functions and by Mohammed in [12] for nonincreasing functions as the set of positive monotonic functions $k \in C^1((0, \delta_0)) \cap L^1(0, \delta_0)$ $(\delta > 0)$ which satisfy

$$\lim_{t\to 0^+} \frac{d}{dt} \left(\frac{K(t)}{k(t)} \right) = \rho_k \in [0, \infty), \quad K(t) = \int_0^t k(s) \, ds$$

and the function $g \in C^1((0,\infty),(0,\infty))$, decreasing on $(0,\infty)$ with $\lim_{s\to 0^+} g(s) = \infty$ and satisfies

(g₀₄) there exists
$$C_g > 0$$
 such that $\lim_{s \to 0^+} g'(s) \int_0^s \frac{d\nu}{g(\nu)} = -C_g$.

They proved separately, under these conditions on g, the following two theorems.

Download English Version:

https://daneshyari.com/en/article/7222791

Download Persian Version:

https://daneshyari.com/article/7222791

Daneshyari.com