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a b s t r a c t

Weprove several monotone formulas for smoothmetric measure spaces with nonnegative
m-Bakry–Émery curvature. First, we define Af (r) and Vf (r) for the weighted Green
function, and establish themonotone formulas. These formulas are parallel to theweighted
volume comparison theorem on smooth metric measure spaces with nonnegative
m-Bakry–Émery curvature. Second, we define the weighted Nash entropy, Fisher
information and Perelman’s entropy. Then we get the monotone formulas along the
weighted heat equation via them-Bakry–Émery curvature.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let M be an n-dimensional complete Riemannian manifold with metric g and dµ(x) = e−f (x) dx the weighted measure,
where f is a smooth potential function and dx is the Riemann–Lebesgue measure. Them-Bakry–Émery curvature is defined
by

Ricf ,m = Ric + Hess f −
1

m − n
df ⊗ df ,

where m ≥ n and m = n only when f is a constant. The m-Bakry–Émery curvature is always used to replace the Ricci
curvature when studying the weighted Laplacian [1–7].

We use △ to denote the classical Laplacian determined by g. Then the weighted Laplacian is defined by

△f = △ − ∇f · ∇.

It is easy to see that △f is symmetric with respect to the weighted measure dµ. In fact,
M

∇u · ∇v dµ = −


M
u△f v dµ

holds for any u, v ∈ C∞

0 (M).△f relates to them-Bakry–Émery curvature via the followingweighted Bochner formula [1–3,7]

1
2

△f |∇u|2 = |∇
2u|2 + ∇u · ∇ △f u + Ricf ,m(∇u, ∇u) +

1
m − n

(∇f · ∇u)2. (1)

The classical Bishop–Gromov’s volume comparison theorem states that on a complete manifold with nonnegative Ricci
curvature, r−nV (Bx(r)) is monotone nonincreasing in the radius r for any fixed x ∈ M , where V (Bx(r)) denotes the volume
of the geodesic ball centered at xwith radius r . This theorem follows from integrating the Laplacian of the distance squared

E-mail address:wlf711178@126.com.

0362-546X/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.na.2013.05.018

http://dx.doi.org/10.1016/j.na.2013.05.018
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.na.2013.05.018&domain=pdf
mailto:wlf711178@126.com
http://dx.doi.org/10.1016/j.na.2013.05.018


L.F. Wang / Nonlinear Analysis 89 (2013) 230–241 231

to a point [8]. As a parallel theory of Bishop–Gromov’s volume comparison theorem, the monotone formulas for A(r) and
V (r) were obtained by Colding in [9], where

A(r) = r1−n

b=r

|∇b|3,

V (r) = r−n

b≤r

|∇b|4,

where the integral is under the measure dx, and G = b2−n is the Green function with respect to the Laplacian △.
Note that the classical Bishop–Gromov’s volume comparison theorem has been generalized to the weighted measure

case via the m-Bakry–Émery curvature [2,10,7]. The generalized one states that on a complete manifold with nonnegative
m-Bakry–Émery curvature, r−mµ(Bx(r)) is monotone nonincreasing in the radius r for any fixed x ∈ M , where µ(Bx(r))
denotes the dµ measure of Bx(r). Hence we can establish a parallel theory of the weighted volume comparison theorem.
We shall define Af (r) and Vf (r), and prove several monotone formulas. We do these in Sections 2–4.

In [11], Perelman introduced the followingW -functional

W (g, t) =


M
[t(R + △v) + v − n](4π t)−

n
2 e−v dx,

where v satisfies
M
(4π t)−

n
2 e−v dx = 1. (2)

He also proved amonotone formula forW (g, t) along the Ricci flow. Thenhe could rule out the nontrivial shrinking breathers
of the Ricci flow. Later Ni [12,13] defined

W (t) =


M
(t|∇v|

2
+ v − n)

e−v

(4π t)
n
2
dx,

where v satisfies (2). The main result in [12] states thatW (t) is monotone nonincreasing along the heat equation
∂

∂t
− △


u = 0 (3)

when the Ricci curvature is nonnegative. Based on this monotone result, Ni got a differential Harnack inequality for the heat
kernel. Ni also pointed out in [13] that

W (t) = F(t) + N(t),

where

F(t) = t

M

|∇u|2

u
dx −

n
2

and N(t), the Nash entropy, is defined by

N(t) = −


M
log uu dx −

n
2
log(4πet).

Note that F(t) is closely related to the Li–Yau gradient estimate for heat equation (3) given in [14]. This estimate states that
on a manifold with nonnegative Ricci curvature, a positive solution to (3) satisfies

|∇ log u|2 − ∂t log u ≤
n
2t

.

Integrating this inequality yields that F(t) ≤ 0. It is not hard to see that F
t is the derivative of the Nash entropy N(t) [13].

We can also find properties of F(t) and N(t) in [9].
In the second part of this paper, we define the weighted Ff ,Nf andWf functionals with respect to the weighted measure

dµ = e−f (x)dx. We shall point out that Ff (t) is closely related to the Li–Yau gradient estimate for theweighted heat equation

(∂t − △f )u = 0 (4)

on manifolds with nonnegative m-Bakry–Émery curvature. This estimate was proved by Li in [1]. We also give several
monotone properties for Ff ,Nf and Wf . We do these in Section 5.
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