

Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS*

Yan-Hsiou Cheng a,*, Kuo-Chih Hung b, Shin-Hwa Wang b

- ^a Department of Mathematics and Information Education, National Taipei University of Education, Taipei, 106, Taiwan, ROC
- ^b Department of Mathematics, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC

ARTICLE INFO

Article history: Received 9 February 2013 Accepted 29 April 2013 Communicated by S. Carl

MSC: 34B18 74G35

Keywords:
Prescribed mean curvature problem
Global bifurcation diagram
Exact multiplicity
Positive solution
MEMS

ABSTRACT

We study global bifurcation diagrams and exact multiplicity of positive solutions for the one-dimensional prescribed mean curvature problem arising in MEMS

$$\begin{cases} -\left(\frac{u'(x)}{\sqrt{1+(u'(x))^2}}\right)' = \frac{\lambda}{(1-u)^p}, & u < 1, -L < x < L, \\ u(-L) = u(L) = 0, \end{cases}$$

where $\lambda>0$ is a bifurcation parameter, and p,L>0 are two evolution parameters. We determine the exact number of positive solutions by the values of p,L and λ . Moreover, for $p\geq 1$, the bifurcation diagram undergoes fold and splitting bifurcations. While for 0< p<1, the bifurcation diagram undergoes fold, splitting and segment-shrinking bifurcations. Our results extend and improve those of Brubaker and Pelesko [N.D. Brubaker, J.A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Anal. 75 (2012) 5086–5102] and Pan and Xing [H. Pan, R. Xing, Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to a MEMS model, Nonlinear Anal. RWA 13 (2012) 2432–2445] by generalizing the nonlinearity $(1-u)^{-2}$ to $(1-u)^{-p}$ with general $p\in(1,\infty)$. We also answer an open question raised by Brubaker and Pelesko on the extension of (global) bifurcation diagram results to general p>0. Concerning this open question, we find and prove that global bifurcation diagrams for 0< p<1 are different to and more complicated than those for $p\geq1$.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study global bifurcation diagrams and exact multiplicity of positive solutions $u \in C^2(-L, L) \cap C[-L, L]$ for the one-dimensional prescribed mean curvature problem arising in electrostatic MEMS

$$\begin{cases} -\left(\frac{u'(x)}{\sqrt{1 + (u'(x))^2}}\right)' = \frac{\lambda}{(1 - u)^p}, & u < 1, -L < x < L, \\ u(-L) = u(L) = 0, \end{cases}$$
(1.1)

This work was partially supported by the National Science Council of the Republic of China.

Corresponding author. Tel.: +886 2 27321104x55821; fax: +886 2 27373549.
E-mail addresses: yhcheng@tea.ntue.edu.tw (Y.-H. Cheng), kchung@mx.nthu.edu.tw (K.-C. Hung), shwang@math.nthu.edu.tw (S.-H. Wang).

where $\lambda > 0$ is a bifurcation parameter, and p, L > 0 are two evolution parameters. The singular nonlinearity

$$f(u) \equiv \frac{1}{(1-u)^p}, \quad p > 0,$$

satisfies

$$f(0) = 1,$$
 $\lim_{u \to 1^{-}} f(u) = \infty$, and $f'(u), f''(u) > 0$ on $[0, 1)$. (1.2)

Notice that the improper integral of f over [0, 1) satisfies

$$\int_0^1 f(u)du = \begin{cases} \infty & \text{if } p \ge 1, \\ \frac{1}{1-p} < \infty & \text{if } 0 < p < 1. \end{cases}$$

The prescribed mean curvature problem

$$\begin{cases} -\operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} = \lambda \tilde{f}(u), & u < 1, \mathbf{x} \in \Omega_L, \\ u = 0, & \mathbf{x} \in \partial \Omega_L, \end{cases}$$
(1.3)

where $\lambda>0$ is a bifurcation parameter and $\Omega_L\subset\mathbb{R}^n(n\geq 1)$ is a smooth bounded domain depending on some parameter L>0, with general nonlinearity $\tilde{f}(u)$ or with many different types nonlinearities, like $\exp(u)$, $(1+u)^p$ (p>0), $\exp(u)-1$, u^p (p>0), u^u (a>0), $u-u^3$, and u^p+u^q $(0\leq p< q<\infty)$ has been recently investigated by many authors; see e.g. [1–16]. We note that, in particular, Bonheure et al. [2] is the first paper when the problem with singularities has been considered. Also note that, in geometry, a solution u(x) of (1.3) is also called a graph of prescribed (mean) curvature $\lambda \tilde{f}(u)$.

A solution $u \in C^2(-L, L) \cap C[-L, L]$ of (1.1) with $u' \in C([-L, L], [-\infty, \infty])$ is called *classical* if $|u'(\pm L)| < \infty$, and it is called *non-classical* if $u'(-L) = \infty$ or $u'(L) = -\infty$; see [8,12]. In this paper we simply consider classical solutions of (1.1). Notice that it can be shown that (see [1,12]) any non-trivial positive solution $u \in C^2(-L, L) \cap C[-L, L]$ of (1.1) is *concave* and *symmetric* on [-L, L]. Moreover, u'(-L) = -u'(L).

For any fixed p, L > 0, we define the bifurcation diagram $C_{p,L}$ of (1.1) by

$$C_{p,L} = \{(\lambda, \|u_{\lambda}\|_{\infty}) : \lambda > 0 \text{ and } u_{\lambda} \text{ is a positive solution of } (1.1)\}.$$

We say that the bifurcation diagram $C_{p,L}$ is \supset -shaped (see e.g. Fig. 1(i) depicted below) if there exists $\lambda^* > 0$ such that $C_{p,L}$ consists of a continuous curve with exactly one turning point at some point $(\lambda^*, \|u_{\lambda^*}\|_{\infty})$ where the bifurcation diagram $C_{p,L}$ turns to the left.

This research is motivated by very recent papers of Brubaker and Pelesko [3,4] and Pan and Xing [15]. Brubaker and Pelesko [3] studied the existence and multiplicity of positive solutions of the prescribed mean curvature problem (1.3) with an inverse square type nonlinearity $\tilde{f}(u) = (1-u)^{-2}$. The problem is a derived variant of a *canonical* model used in the modeling of electrostatic Micro-Electro Mechanical Systems (MEMS) device obeying the electrostatic Coulomb law with the Coulomb force satisfying the *inverse square law* with respect to the distance of the two charged objects, which is a function of the deformation variable (cf. [17, p. 1324]). The modeling of electrostatic MEMS device consists of a thin dielectric elastic membrane with boundary supported at 0 below a rigid plate located at +1. In (1.3), u is the unknown profile of the deflecting MEMS membrane, λ is the drop voltage between the ground plate and the deflecting membrane, and the term $|\nabla u|^2$ is called a fringing field (cf. [3,18]). We refer the reader to [3,19–21] for the mathematical analysis of the electrostatic MEMS problem (1.3). Notice that the physically relevant dimensions are n=1 and n=2. In the case for n=1, Ω_L is a rectangular strip with two opposite edges at $x=\pm L$ fixed (2L is the length of the strip) and the remaining two edges free, the deflection u=u(x,y) may be assumed a function of x only. In the case for n=2, Ω_L is a planar bounded domain with smooth boundary, and L is the characteristic length (diameter) of the domain. In particular, Ω_L could be a circular disk of radius L.

With general p > 0, (1.1) is a generalized MEMS problem under the assumption that the Coulomb force satisfies the *inverse* p-th power lawwith respect to the distance of the two charged objects, where p > 0 characterizes the *force strength*. See [22,23].

Brubaker and Pelesko [4] and Pan and Xing [15] studied global bifurcation diagrams and exact multiplicity of positive (classical) solutions for problem of (1.1) with p=2. They independently proved that there exists $L^*>0$ such that, on the $(\lambda, \|u\|_{\infty})$ -plane, the bifurcation diagram $C_{2,L}$ consists of a (continuous) \supset -shaped curve when $L \geq L^*$, and as L transitions from greater than or equal to L^* to less than L^* the upper branch of the bifurcation diagram $C_{2,L}$ splits into two parts. See Fig. 1 and see [4, Theorem 1.1] and [15, Theorem 1.1] for details. Note that Brubaker and Pelesko [4, Theorem 1.1] showed that $L^* \approx 0.3499676$ and they also gave some computational results; see [4, Fig. 2].

In this paper, we extend and improve their results by generalizing the nonlinearity $(1-u)^{-2}$ to $(1-u)^{-p}$ with general $p \in [1, \infty)$; see Theorem 2.1 stated below. Our results (Theorems 2.1 and 2.2) also answer an open question raised by Brubaker and Pelesko [4, section 4] on the (possible) extension of (global) bifurcation diagram results of generalized MEMS problem (1.1). We find and prove that global bifurcation diagrams $C_{p,L}$ for $0 are different to and more complicated than those for <math>p \ge 1$; compare Fig. 2 depicted below with Fig. 1. Thus p is also a bifurcation parameter to prescribed mean

Download English Version:

https://daneshyari.com/en/article/7222809

Download Persian Version:

https://daneshyari.com/article/7222809

Daneshyari.com