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A B S T R A C T

This paper reveals dark and singular optical solitons, as well as their combinations thereof, of the
perturbed Kundu–Eckhaus equation. Two integration methodologies are adopted here. The ex-
istence criteria for these solitons are also presented.

1. Introduction

Optical soliton perturbation is the backbone of telecommunications industry. This industry stays in business because of the marvel
of soliton transmission technology. One of the various models that govern these pulse transmission across inter–continental distances
is the Kundu–Eckhaus (KE) equation. In the past, several approaches were applied to address this model [1–10]. This paper studies
the model with a few Hamiltonian perturbation terms by using two integration schemes. These are exp(−ϕ(ξ))-expansion scheme and
G′/G2-expansion method. The dark and singular soliton solutions will emerge from these integration schemes. These soliton solutions
will be listed with their corresponding constraint conditions that will formulate the existence criteria of these pulses. The paper starts
with an introduction to the model followed by a quick review of the two algorithms. Finally, the soliton solutions to the model will be
computed. The details are discussed in the rest of the paper.

1.1. Governing equation

Consider the perturbed KE equation given as
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In Eq. (1), x and τ represent spatial and temporal co–ordinates respectively. The dependent variable is u(x, τ) which gives the pulse
profile. The first term in (1) is accounts for temporal evolution of the pulse, while the real-valued constants a, and b represents group
velocity dispersion, quintic nonlinearity. On the right-hand side of (1), α denotes the inter-modal dispersion, λ1 gives the effect of
self–steepening for short pulses to eliminate the shock formation and μ1 is the higher–order dispersion coefficient.

2. A quick glance at proposed analytical techniques

A general form of nonlinear evolution equation (NLEE) is:

… =P u D u D u D u D u D u( , , , , , , ) 0,τ x τ xτ x
2 2 (2)

where u= u(x, τ) is an unknown function, P is a polynomial in u as well as its partial derivatives. Here, nonlinear terms and its
highest order derivatives are included. The traveling wave hypothesis is the transformation

= = −u x τ U ξ ξ x vτ( , ) ( ), .

After applying this wave transformation, the NLEE converts to a nonlinear ordinary differential equation (ODE) as given by:

′ ″ ‴ … =S U U U U( , , , , ) 0, (3)

where ′ denotes the derivative with respect to ξ.

2.1. exp(−ϕ(ξ))-expansion method

For exp(−ϕ(ξ))-expansion method, the wave forms are expressed as
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where Fn are unknown constants to be determined and Φ(ξ) satisfies the auxiliary ODE:

′ = − + +ξ ξ μ ξ λΦ ( ) exp( Φ( )) exp(Φ( )) . (5)

The auxiliary Eq. (5) has the general solutions given by one of the following five forms:
Case-1:(Hyperbolic function solutions)
When λ2− 4μ > 0 and μ≠ 0, then
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Case-2: (Trigonometric function solutions)
If λ2− 4μ < 0 and μ≠ 0, then
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Case-3: (Hyperbolic function solutions)
However, if λ2− 4μ > 0 and μ=0 and λ≠ 0 then
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Case-4: (Rational function solutions)
Next, if λ2− 4μ=0 and μ≠ 0 and λ≠ 0,
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Case-5:
Finally, if λ2− 4μ=0 and μ=0 and λ=0, then

= +ξ ξ CΦ ( ) ln( ).5 (10)

where C is the integration constant.
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