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A B S T R A C T

In this article, we find chirped and dipole soliton for nonlinear negative-index materials with
quadratic-cubic nonlinearity. We will use sub-ODE method [32] to find chirped soliton and an-
satz method of Choudhuri and Porsezian [41] to get dipole soliton.

1. Introduction

The soliton propagation in nonlinear optical fiber is a topic of current research because of the vital applications of short light
pulses to telecommunication and ultrafast signal routing systems [1–37]. Chirped soliton is a type of signal emerges when frequency
changes with time [38,39]. Chirped pulses are used in solitary wave-base communications, design of fiber optic amplifier and optical
pulse compressors due to their applications in amplification or pulse compression [30]. Bouzida et al. [39] used dual power law in
nano optical fibers to find chirped soliton. Dipole soliton or dark in the bright soliton were first observed by Choudhuri and Porsezian
[41]. Dipole soliton are composed of product of bright and dark soliton. Chettouh et al. [42] studied extended nonlinear Schrödinger
for dipole soliton. In this paper, we find the chirped soliton with sub-ODEs method and dipole soliton under the ansatz method for
nonlinear negative index materials under quadratic-cubic nonlinearity [41].

2. Mathematical model

The model studies the dynamics of soliton propagation through optical metamaterials is given as [23]:
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where wave profile is represented by q(x, t), group velocity dispersion is represented by the coefficient of a. While quadratic-cubic
nonlinearity is shown by b1 and b2. On other side of mathematical model, inter modal dispersion, self-steepening and nonlinear
dispersion are represented by α, β and ν respectively.

In the following subsection, we find the chirped soliton for Eq. (1)

2.1. Chirped soliton

We start with the hypothesis [38]:
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where

= −ξ x ut

where ρ(ξ) represents amplitude function, X(ξ) is the phase function, u is the wave velocity and Ω shows the frequency of wave
oscillation. Now by using Eq. (2) and its derivatives into Eq. (1), we get the following real and imaginary part;
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We can solve the above equations by considering the chirp as [38]:

′ = +X δρ η2 (5)

where δ and η are the nonlinear and constant chirp parameters. We get two algebraic equations by using Eq. (5) into Eq. (4)
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Now using Eqs. (5)–(7) in to Eq. (3) we get,
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Multiplying Eq. (8) with ρ′ and integrating we get
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By using the sub-ODE [32], we get the following solutions for Eq. (9);

Bell type solitary wave solutions: a1 > 0, a2 < 2a1, = −a aa
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By considering a2= 0, we obtain bright soliton solution.
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