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A B S T R A C T

Chirp-free bright optical soliton solutions are obtained for Chen–Lee–Liu equation by traveling
wave hypothesis as well as the application of semi-inverse variational principle. The constraint
conditions for the existence of these solitons are also presented.

1. Introduction

Optical soliton perturbation is one of the most active areas of research in fiber-optic telecommunications engineering. The dy-
namics of information transfer across inter-continental distances has marveled with the aid of several mathematical models that
successfully describe its impact. There are several intricacies with the wide variety of models that describe this technology. While
some models are integrable by Inverse Scattering Transform and others are not. Again, none of the modern methods of integration,
that mushroomed up from every corner of the world, can secure soliton radiation, which is an important component of the complete
solution spectrum of any given nonlinear evolution equation that models soliton transmission through optical fibers and PCF. The
current paper will study one form of the popular derivative nonlinear Schrödinger's equation (DNLSE) that describe sub-pico second
soliton transmission. It is DNLSE-III that is otherwise commonly referred to as Chen–Lee–Liu (CLL) equation [1–10]. This model has
been extensively studied all across the globe and there is still a lot of work to be done with this model. This paper will study the
perturbed CLL equation by two integration schemes to retrieve its chirp-free bright soliton solution. They are traveling wave hy-
pothesis and semi-inverse variational principle (SVP). The details are jotted in the following sections and their sub–sections.

1.1. Governing model

The perturbed CLL equation in its dimensionless form is of the form [1]:
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Here, in (1) q(x, t) is the wave profile that is a complex-valued function and is a dependent variable. The independent variables are x
and t that respectively represent spatial and temporal co-ordinates. The first term in (1) gives temporal evolution of the pulses, while
a gives the coefficient of group velocity dispersion ad b is coefficient of nonlinearity. On the right hand side, α is the coefficient of
inter-modal dispersion that is considered in addition to chromatic dispersion. Next, λ represents the coefficient of self-steepening
while θ gives the effect of nonlinear dispersion. Here a, b, α, λ and θ are real-valued constants. Solitons are the outcome of a delicate
balance that persists between dispersion and nonlinearity.

2. Mathematical analysis

The chirp-free amplitude-phase format assumption to integrate perturbed CLL equation is [1,3–6]:

=q x t g s e( , ) ( ) ,iϕ x t( , ) (2)

Where

= −s x vt, (3)

and v is the soliton speed. The phase of the pulse has the following split:

= − + +ϕ x t κx ωt θ( , ) .0 (4)

Here, κ is the soliton frequency, ω is its wave number and θ0 is the phase center.
Next, substitute (2) into (1). The real part yields:

″ − + + + − =ag ω ακ aκ g b λ κg( ) ( ) 02 3 (5)

where g′= dg/ds, g″= d2g/ds2 and so on. The imaginary part implies:

+ − − + + =v aκ α b λ θ g2 ( 3 2 ) 0.2 (6)

From (6), velocity of the soliton is

= − +v aκ α2 (7)

and the constraint condition comes out as:

+ + =b λ θ3 2 0. (8)

The real part equation, given by (5) will be further studied.

2.1. Traveling wave hypothesis

Multiplying both sides of (5) by g′ and integrating gives

′ = + + − −a g ω ακ aκ g b λ κg2 ( ) 2( ) ( )2 2 2 4 (9)

when the integration constant is taken to be zero. Separating variables and integrating again, leads to
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Thus, the following chirp-free bright 1-soliton solution is yielded:

= − − + +q x t A B x e( , ) sech[ ( vt)] i κx ωt θ( )0 (13)

where the amplitude A and the inverse width B of the soliton are indicated by (11) and (12) respectively. The velocity of the soliton is
in (7). The expressions for amplitude and width of the soliton introduces the constraints:

− + + >κ b λ ω ακ aκ( )( ) 0,2 (14)

and

+ + >a ω ακ aκ( ) 0.2 (15)
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