Accepted Manuscript

Title: Effect of growth temperatures on the surface morphology, optical analysis, dielectric constants, electric susceptibility, Urbach and bandgap energy of sprayed NiO thin films

Authors: Alaa A. Akl, Safwat A. Mahmoud

PII: S0030-4026(18)31064-7

DOI: https://doi.org/10.1016/j.ijleo.2018.07.092

Reference: IJLEO 61248

To appear in:

Received date: 11-4-2018 Revised date: 23-7-2018 Accepted date: 24-7-2018

Please cite this article as: Akl AA, Mahmoud SA, Effect of growth temperatures on the surface morphology, optical analysis, dielectric constants, electric susceptibility, Urbach and bandgap energy of sprayed NiO thin films, *Optik* (2018), https://doi.org/10.1016/j.ijleo.2018.07.092

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of growth temperatures on the surface morphology, optical analysis, dielectric constants, electric susceptibility, Urbach and bandgap energy of sprayed NiO thin films

Alaa A. Akl a,b and Safwat A. Mahmoud c

- a Physics Department, Faculty of Science, Minia University, Minia, Egypt
- b Physics department, Faculty of Science, Ed Dawadmi, Shaqra University, Saudi Arabia
- c Physics Department, Faculty of Science, Northern Border University, Saudi Arabia

Corresponding author: Prof. Dr. Alaa Ahmed Akl

E-mail: <u>alaaakl2010@windowslive.com</u> Tel.: +2 01020400344 ; Fax: +2 086 2363011

Abstract

Thin films of nickel oxide (NiO) were deposited on glass substrates at a different temperature of growth using spray pyrolysis. Optical properties were examined using spectral measurement at a wavelength range of 300-2500 nm. Optical constants (n and k) were calculated from corrected transmittance and correct reflection. The data obtained show that the direct transition (Eg) decreased from 3.738 to 3.146 eV and the change in indirect transmission from 2.790 to 2.049eV with increasing temperature. On the contrary, it was found that the Urbach energy (band tail width), the E_U has decreased from 0.184 to 0.104eV. This behavior is believed to be associated with increased growth temperature. Optical conductivity, reflectivity, dielectric constants, volume and surface energy loss functions, electrical susceptibility and relaxation time were discussed as functions for growth temperatures. Of these results, NiO films were rated as an excellent material for optoelectronic applications and a potential candidate for solar cell applications due to their ability to improve.

Keywords: Optical Conductivity, Dielectric Constant, Nickel Oxide, Thin Films, Spray Pyrolysis

1-Introduction

Nickel oxide is an important magnetic semiconductor with a wide band gab 3.6eV and cubic crystal structure [1,2]. The promising candidate for many applications such as electro catalysis [3], the positive electrode in batteries [4], the fuel cells [5], the electrochromic devices [6], the solar thermal absorber [7] the catalyst for the evaluation of oxygen [8] and photo electrolysis [9]. Surface atoms play an important role in controlling the electronic and optical properties of nanomaterial. Estimating the energy gap in semiconductors in nanostructures is somewhat difficult because the surface atoms in the valence and conductivity bands are not surprising, and the complexity of the

Download English Version:

https://daneshyari.com/en/article/7223019

Download Persian Version:

https://daneshyari.com/article/7223019

<u>Daneshyari.com</u>