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A B S T R A C T

This paper obtains bright, dark and singular optical soliton solutions to the
Lakshmanan–Porsezian–Daniel model that describes soliton propagation through polarization-
mode dispersive fibers, without the effect of four-wave mixing. The method of undetermined
coefficients is employed to retrieve these soliton solutions. The existence criteria for these soli-
tons are also presented.

1. Introduction

Optical solitons in polarization mode dispersion (PMD) fibers have been extensively studied with coupled nonlinear Schrödinger's
equation and other similar models such as Manakov equations. This paper will be addressing the study of soliton solutions for PMD
fibers with the vector coupled version of Lakshmanan–Porsezian–Daniel (LPD) model. LPD model has been extensively studied in
polarization preserving fibers during the past few years [1–15] although lately this model has sparked interest to model soliton
propagation in PMD fibers [2]. The coupled form of LPD is first derived without the effect of four-wave mixing (4WM) so that the
coupled version of LPD stays simple. Subsequently, the method of undetermined coefficients is employed to retrieve bright, dark and
singular soliton solutions to the model. These solitons appear with several forms of parametric restrictions that are written as
constraint conditions. The details are enumerated in the subsequent sections.
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1.1. Governing model

The dimensionless form of LPD model, with Kerr law nonlinearity, that has been studied in the past is given in the form [1–9,15]:
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In (1), the real-valued coefficients a and b represent group velocity dispersion (GVD) and spatio-temporal dispersion (STD) re-
spectively. Then, c is the coefficient of Kerr law nonlinearity and σ is the fourth order dispersion while δ accounts for two-photon
absorption. The remaining terms are from other forms of dispersive phenomenon [1]. Soliton formation is the outcome of a delicate
balance between dispersive and nonlinear effects.

For birefringent fibers, the model therefore splits into two components leading to the coupled vector form of LPD. After neglecting
the effects of 4WM, this coupled system takes the form [2]:
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From (2) and (3), the coefficients of aj and bj, for j=1, 2 are GVD and STD respectively for the two components. The self-phase
modulation (SPM) terms are cj and fj while the cross-phase modulation effect comes from the coefficients of dj, gj and hj. The fourth
order dispersion stems from the coefficients of σj. The remaining terms give the effect of addition dispersion.

2. Mathematical analysis

With the system been established, we now proceed to analyzed it focusing in optical soliton solutions evolving inside birefringent
fibers. In order to explore the integration of the LPD model for birefringent fibers governed by the system (2) and (3), a solution of the
form
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is assumed. Notably, phase-matching condition is implemented to permit integrability of the governing model. Here, κ denotes the
soliton frequency and ω is the soliton wave number, while the parameter θ0 indicates the phase constant. The substitution of (4) and
(5) into the system (2) and (3), leads to an expression in which, after splitting into real and imaginary parts, the real portion takes the
form:
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while the imaginary portion is
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where = −l l3 , for l=1, 2. Its is well known that the soliton profile Pl(x, t) can be written in the form F(x− vt), where v represents
the soliton speed. In view of such fact, the imaginary part equation leads to
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as long as the identities
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