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a  b  s  t  r  a  c  t

Cylindrical  electromagnetic  waves  propagation  in  inhomogeneous  and  nonlinear  media
is of  great  interest  for theory  and  application,  and  is an  extremely  complicated  problem
which  can  be  described  by the  cylindrical  nonlinear  Maxwell  equations.  In this  paper,  we
propose  a method  to  exactly  solve  the  cylindrical  Maxwell  equations  in  various  types  of
inhomogeneous  nonlinear  media  without  dispersion.  The  obtained  solutions  can  be  used
to describe  the evolution  of  nonlinear  oscillatory  system  and  the  interaction  between  two
radiation waves  in nonlinear  media.  We  also  show  some  nonlinear  effects,  such  as  second
harmonic  generation,  and  sum-  and  difference-frequency  generation,  result  quite  naturally
from the  solutions.

© 2018  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The researches of cylindrical electromagnetic waves in inhomogeneous and nonlinear media are of fundamental impor-
tance [1,2], and can be applied to various engineering technologies, including electromagnetic fields amplification [3],
controlling of photons [4], optical cloaking [5], geophysical prospecting [6] and others [7–11]. Due to the extreme complexity
of the corresponding cylindrical nonlinear Maxwell equations [12], numerical methods [13–18] have long been the main
means to conduct these researches. Despite this, however, exact solutions of the nonlinear system still play irreplaceable
roles in understanding, predicting the nonlinear effects [19,20], and developing computational methods [21].

Recently, Ref. [2] proposed a method for constructing exact axisymmetric solutions of the cylindrical Maxwell equations
which describe the behavior of cylindrical electromagnetic waves in a nonlinear nondispersive medium whose dielectric
function is an exponential function of the electric field amplitude. Then, some related works have been reported [12,22–31].
For example, Refs. [23,24] showed this method could be extended to solve the problem of electromagnetic waves propa-
gation in more complex media. Refs. [25,26] investigated second harmonic generation, and sum- and difference-frequency
generation by using the exact solutions. However, to the best of our knowledge, there haven’t been any other nonlinear
dielectric functions be rigorously solved for identical physical models.

In this paper, we will construct exact solutions in two ways for the problem of cylindrical electromagnetic waves prop-
agation in various types of inhomogeneous nonlinear and nondispersive media, and the physical meanings of the solutions
are discussed.
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2. Electromagnetic model and exact solutions

We  focus on the cylindrical Maxwell equations that have been used in some previous works [2,12,22–32]:

∂H�(r, t)

∂r
+ H�(r, t)

r
= ∂Dz(r, t)

∂t
= ε(r, Ez)

∂Ez(r, t)
∂t

,

∂Ez(r, t)
∂r

= �0
∂H�(r, t)

∂t
,

which describe the features of electromagnetic fields in nonmagnetic and nondispersive media in a cylindrical coordinates
system (r, �, z), and the fields are independent of � and z (consider E waves with respect to the z axis). Here Ez and H� represent,
respectively, the electric and magnetic field, Dz is the electric displacement, ε(r, Ez) = dDz/dEz is a dielectric function, and �0
is the permeability of vacuum. For convenience, we introduce the dimensionless variables � = r

r0
, � = t

r0
√
�0�0

(�0 is the

permittivity of vacuum), E = Ez
(N/C) , and H =

√
�0H�√
�0(N/C)

, where r0 is a characteristic constant which describes the characteristic

spatial scale, and (N/C) is the unit of electric field strength. Then we can get the dimensionless Maxwell equations as follows:
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(1)

We  will show that if the dielectric function ε is chosen in the form

ε(�, E) = f  (˛E +  ̌ ln �)
�2

, (2)

where f is an arbitrary function and  ̨ and  ̌ (  ̌ /= 0) are arbitrary constants, then Eq. (1) can be exactly solved. Dielectric
function (2) indicates the nondispersive media here are inhomogeneous and nonlinear. When  ̌ = 2 and f(x) = exp(x), where
x represents the independent variable, Eq. (2) will be reduced to ε(�, E) = exp(˛E). Such a dielectric function can be used to
describe the dielectric properties of uniaxial pyroelectric and ferroelectric crystals [33–35], as is shown in Ref. [2]. With the
development of material science, it is possible to construct almost any kind of media by considering metamaterials [36–38].

We use the following ansatz in Eqs. (1) and (2)

E = ˛−1(u − ˇ	), H = g−1
0 (v − ˇ
), (3)

where g−1
0 = (˛�)−1, 	 = ln�  and 
 = �, then we get
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(4)

If the Jacobian D(u, v)/D(	, 
) of Eq. (4) is nonzero [2], then the hodograph transformation is applicable, and we  view u
and v as independent variables and 	 and 
 as dependent variables and obtain

∂
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,

∂
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.

(5)

Eq. (5) are linear equations. However, initial and boundary conditions of Eqs. (1) and (2) are hardly expressed by new
variables u, v, 	 and 
. Unlike the previous works [2,12,22–30], here we suppose that we  have found an analytical solution
of the following linear system:
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