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This  paper  employs  extended  trial  function  method  to  retrieve  sub-pico-second  optical
soliton  solutions  to  Kaup–Newell’s  equation  that  is  one  of  the  forms  of derivative  non-
linear  Schrödinger’s  equation.  Bright  and  singular  soliton  solutions  are  revealed  with  this
algorithm.
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1. Introduction

One of the several models that is studied to demonstrate soliton molecule propagation through an optical fiber is the
derivative nonlinear Schrödinger’s equation (DNLSE). There are several forms of DNLSE that are known till today. They are
Gerdjikov–Ivanov equation, Chen–Lee–Liu equation and Kaup–Newell equation (KNE). These are alternatively designated
as DNLSE-I, DNLSE-II and DNLSE-III equations. The first two  models have been extensively studied in the field of nonlinear
optics. This paper will study the KNE by the aid of extended trial function scheme in the context of sub-pico-second pulse
propagation through an optical fiber. There is a plethora of mathematical schemes that are available today to address these
variety of nonlinear evolution equations [1–15]. It is well known that propagation of Alfven waves in plasmas is also modeled
by KNE [2]. After a quick introduction to the model, this paper details the derivation of chirped soliton solutions to KNE.
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1.1. Governing model

The dimensionless form of KNE that is going to be studied in this paper is given by [2,3]

qt + iaqxx + b
(
|q|2q

)
x

= 0. (1)

Here, q(x, t) is a complex-valued function that represents the wave profile. The coefficient of a is the group velocity dispersion
and the coefficient of b is the nonlinearity. Soliton solutions are the outcome of a delicate balance that exist between
dispersion and nonlinearity.

1.2. Mathematical analysis

In order to investigate solutions with nonlinear chirp of Eq. (1), the following representation of the complex field q(x, t)
is adopted:

q(x, t) = � (�) ei[�(�)−ωt], (2)

where � = x − vt,  � (�) is the amplitude function, and � (�) is the phase function. Also, v is the wave velocity, and ω is the
frequency of the wave oscillation.

Inserting (2) into (1) and separating into real and imaginary parts yields a pair of relations. Real part gives

v�′ − 3b�2�′ + 2a�′�′ + a��′′ = 0, (3)

while imaginary part implies

ω� + v��′ − b�3�′ + a�
(
�′)2 − a�′′ = 0, (4)

where �′ = d�/d�, �′′ = d2�/d�2, �′ = d�/d� and �′′ = d2�/d�2. Multiplying both sides of (3) by � and integrating leads to

�′ = 3b�2

4a
− v

2a
− A

a�2
, (5)

where A is an integration constant. The corresponding chirp described by

ıω = − ∂
∂x

[� (�) − ωt] =  −�′ (�) , (6)

can be written as

ıω(x, t) = A

a�2
+ v

2a
− 3b�2

4a
. (7)

Substituting (5) into (4) yields

a�′′ − A2

a�3
+

(
2bA + v2 − 4aω

4a

)
� − bv

2a
�3 + 3b2

16a
�5 = 0. (8)

Next balancing the terms �′′ and �5 gives

N = 1
2
. (9)

To obtain a closed form analytic solution, it is employed a transformation formula

�(x, t) = F1/2(x, t), (10)

that will carry (8) into

4a2
(
F ′2 − 2FF ′′) + 16A2 − 4

(
2bA + v2 − 4aω

)
F2 + 8bvF3 − 3b2F4 = 0. (11)

2. Extended trial function scheme

To start off with extended trial function scheme [4,5,8,9], the following assumption for the solution structure of (11) is
taken up:

F =
ς∑
i=0

�i˚
i, (12)

where

(˚′)2 = 	(˚) = 
 (˚)
ϒ(˚)

= �˚ + · · · + �1  ̊ + �0

��˚� + · · · + �1  ̊ + �0
. (13)
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