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a  b  s  t  r  a  c  t

We theoretically  and  numerically  investigated  the  modal  properties  of  three  different  kinds
of cross-section  rotating  mirrors.  At the same  facet size, the  fundamental  frequency  of
equilateral-triangle  cross-section  rotating  mirror  (ET-RM)  was  8725.4  Hz,  which  was  1.81
times  and  4.60  times  higher  than  that  of  equilateral-square  and  equilateral-hexagonal  rotat-
ing  mirrors.  The  displacement  response  curves  of  the  three  kinds  rotating  mirrors  show  that
the amplitude  of  the first  peak  is further  larger  than the  second  one.  The  first  bending  modal
of rotating  mirror  is  the main  reason  of  the damage  for  rotating  mirrors.  The  maximum
working  speed  of  ET-RM  with  face size  of  17.32  mm  ×  36 mm  is  44,400  rpm.  That  of  the  other
two  kinds  of  rotating  mirror  are  37,800  rpm  and  27,000  rpm  respectively.  The  equilateral-
triangle  cross-section  as  an ideal  structure  of rotating  mirror  for  ultra-high-speed  cameras
based  on  the  dynamic  properties.

©  2018  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Rotating mirror (RM)-based ultra-high-speed cameras, with their large frame area, large frame count, high spatial reso-
lution, and wide dynamic range, are regarded as one of the important transient imaging techniques in the modern economy,
scientific research, and the national defense industry [1–5]. These cameras have been extensively used to image the details
of explosions, splintering, detonations, shockwaves, high-voltage discharges, supersonic wind tunnels, high-speed combus-
tion, and so on [4,5]. In the RM ultra-high-speed camera system, the RM is not only as an imaging element in optical path,
where imaging quality is affected by surface quality and plane deformation of the RM,  but also as an element to implement
ultrahigh speed, because performances of the ultra-high-speed camera system are mainly dependent on the edge linear
velocity and dynamic mechanical properties of the RM [6–10]. Dynamic properties of RM are interested research subjects,
and data computed by derived formula are expected to be coincident with results from experiments. The troublesome vibra-
tion is normal to the axis of rotation and is at an amplitude maximum when the speed of rotation is the same as one of the
RM vibration frequencies. Ruptures of RM have occasionally occurred, which generally indicates that the RM is not strong
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enough for high-speed loading, or the fatigue crack is generated because of the accumulation of fatigue damage caused by
torsion or bending vibration [11–17]. The vibrational characteristic of RM is immensely dependent on cross-section shape
and lateral mass distribution of RM [18–22].

In this paper, the dynamic properities of mainly three cross-section shapes of RM,  namely, equilateral-triangle RM
(ET-RM), equilateral-square RM (ES-RM), and equilateral-hexagonal RM (EH-RM), were investigated by theoretically and
numerically method. The first three natural frequencies of ET-RM are 8725.4 Hz, 8726.2 Hz, and 10,013.0 Hz. For ES-RM, the
values are 4810.3 Hz, 7684.6 Hz, and 7688.3 Hz. For EH-RM, the modal parameters are 1895.5 Hz, 5288.2 Hz, and 5292.0 Hz.
The fundamental frequency of ET-RM is 1.81 times and 4.60 times higher than those of ES-RM and EH-RM, respectively. The
first bending modal of RM is the main reason of the damage for RMs. The maximum working speed of ET-RM with face size
of 17.32 mm × 36 mm is the highest speed among the three different cross-section. Considering the dynamic properities,
equilateral-triangle cross-section is an ideal cross-section construction of RM for ultra-high-speed cameras.

2. Theory of modal analysis

Assuming that the RM system is damped with viscous damping, the motion differential equation of the finite element
can be expressed as [22–24]
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ẍ
}

+ [ce]
{
ẋ
}

+ [ke] {x} =
{
f e (t)

}
, (1)

where [me] is the mass matrix of an element, [ce] is the damping matrix of the element, [ke] is the stiffness of the element,
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where {feI(t)} is the physical strength matrix of the element, and {feD(t)}  is the damping force matrix of the element.
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ẍe

}
dV, (3)

where � is the density of the element, and [N] is the shape function matrix of the element,

{
f eD (t)

}
= −

∫
Ve

c [N]
T

[N]
{
ẋe
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where c is the damping coefficient of the element,
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where [Be] is the strain matrix of the element, [Be]T is the transformation matrix of an element strain matrix, and [De] is the
elastic matrix of the element.
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� and G are Lame constants of the RM material and can be expressed as
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(1 + �) (1 − 2�)
, (9)
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, (10)

where E is a constant called the Young’s modulus, and � is the Poisson ratio.
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