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a  b  s  t  r  a  c  t

The  extended  trial function  approach  was  successfully  applied  to determine  soliton  solu-
tions to Fokas–Lenells  equation.  Bright,  dark and  singular  soliton  solutions  are  retrieved
with  the  aid  of  this  algorithm.  In  addition,  several  other  solutions  also emerged  from  this
scheme  whose  limiting  case  led  to optical  solitons.
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1. Introduction

Optical soliton dynamics is administered by a plethora of mathematical models. A few of these models frequently visible
are the familiar nonlinear Schrödinger’s equation, Schrödinger–Hirota equation, Sasa–Satsuma equation, Kundu–Eckhaus
equation, Radhakrishnan–Kundu–Lakshmanan equation, Lakshmanan–Porsezian–Daniel model, Chen–Lee–Liu equation,
Gerdjikov–Ivanov equation and many others. While these models govern the soliton dynamics in (1 + 1)-dimensions, in
higher dimensions, some of the commonly visible models are Manakov model, Thirring model, cascaded systems and oth-
ers. This paper will study one such model in (1 + 1)-dimensions that has recently gained popularity. It is the Fokas–Lenells
equation (FLE) that was first proposed less than a decade ago and ever since it has gained popularity. The method of extended
trial function scheme is the integration scheme that will be applied in this paper to extract solitons and other solutions to the
equation. This is one of the very many popular methodologies that has been successfully applied to extract soliton solutions
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to a variety of nonlinear evolution equations [1–6]. This paper will now explore the details of extended trial function method
applied to FLE.

1.1. Governing equation

The dimensionless form of the Fokas–Lenells equation (FL) in presence of perturbation terms is given by [7–10]

iqt + a1qxx + a2qxt + |q|2 (bq + i�qx) = i
{
˛qx + �

(
|q|2mq

)
x

+ �
(
|q|2m

)
x
q
}
. (1)

In model (1), q(x, t) represents a complex field envelope, and x and t are spatial and temporal variables, respectively. Here,
the first term represents the linear evolution of the pulses in nonlinear optical fibres, while the coefficient a1 is the spatio-
temporal dispersion (STD) and a2 is the group velocity dispersion (GVD). Then the fourth term introduces the cubic nonlinear
term, while the fifth term accounts for dispersion. On the right-hand side of (1), the coefficient of  ̨ is the inter-modal
dispersion (IMD), while � is the self-steepening perturbation term and finally � is the nonlinear dispersion (ND) coefficient.
The parameter m conforms to full nonlinearity.

1.2. Mathematical analysis

To get start with the integration process of (1), the starting hypothesis is

q(x, t) = P(�)ei�(x,t), (2)

where P(�) represents the shape of the pulse and

� = x − vt, (3)

and the phase component is defined as

�(x, t) = −�x + ωt + 	. (4)

Here, v is the velocity of the soliton, � is the frequency while ω is the soliton wave number and 	 is the phase constant.
Inserting (2) along with (3) and (4) into (1) and decomposing into imaginary and real parts, the following pair of equations,
respectively gives(

v +  ̨ + 2a1� − a2(v� + ω) − �P2 + (� + 2m� + 2m�)P2m
)
P ′ = 0, (5)
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)
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To carry out the integration of Eqs. (5) and (6) it needs to choose m = 1 which means Eq. (1) condenses to:
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so that Eqs. (5) and (6) simplify to(
v +  ̨ + 2a1� − a2(v� + ω) + (3�  + 2� − �)P2

)
P ′ = 0, (8)

(a1 − a2v)P ′′ −
(
˛� + ω + a1�

2 − a2�ω
)
P + (b − �� + ��)P3 = 0. (9)

The imaginary part Eq. (8) now leads to the velocity of the soliton as

v =  ̨ + 2a1� − a2ω

a2� − 1
,  (10)

whenever

a2� /= 1, (11)

and the constraint condition

3� + 2� − � = 0. (12)

2. Extended trial function method

This section will apply extended trial function technique [1–6] for acquiring bright, dark and singular soliton solutions
to the model (1). To start with the extraction of solutions to (9), the following assumption for the soliton structure is made:

P =
ς∑
i=0

�i�
i, (13)
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